Skip to main content
Log in

Characterization of new DOPC/DHPC platform for dermal applications

European Biophysics Journal Aims and scope Submit manuscript

Abstract

Systems formed by mixtures of the phospholipids dioleoylphosphatidylcholine (DOPC) and dihexanoylphosphatidylcholine (DHPC) were characterized by use of differential scanning calorimetry, small angle X-ray scattering and two electron-microscopy techniques, freeze fracture electron microscopy and cryogenic transmission electron microscopy. These techniques allowed for the determination of the size, morphology, structural topology, self-assembly and thermotropic behavior of the nanostructures present in the mixtures. The interaction between the two phospholipids provides curvatures, irregularities and the increase of thickness and flexibility in the membrane. These effects led to the formation of different aggregates with a differential distribution of both phospholipids. The effect of these systems on the skin in vivo was evaluated by measurement of the biophysical skin parameters. Our results show that the DOPC/DHPC application induces a decrease in the permeability and in the hydration of the tissue. These effects in vivo are related to different microstructural changes promoted by these systems in the skin in vitro, published in a recent work. The fundamental biophysical analyses of DOPC/DHPC systems contribute to our understanding of the mechanisms that govern their interaction with the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

DOPC:

1,2-Dioleoyl-sn-glycero-3-phosphatidylcholine

DHPC:

1,2-Dihexanoyl-sn-glycero-3-phosphatidylcholine

DMPC:

1,2-Dimyristoyl-sn-glycero-3-phosphatidylcholine

DPPC:

1,2-Dipalmitoyl-sn-glycero-3-phosphatidylcholine

FFEM:

Freeze fracture electron microscopy

SAXS:

Small-angle X-ray scattering

DSC:

Differential scanning calorimetry

Cryo-TEM:

Cryo-transmission electron microscopy

TEWL:

Trans epidermal water loss

References

  • Almgren M (2010) Stomatosomes: perforated bilayer structures. Soft Matter 6:1383–1390

    Article  CAS  Google Scholar 

  • Barbosa-Barros L, Barba C, Cócera M, Coderch L, López-Iglesias C, de la Maza A, López O (2008a) Effect of bicellar systems on skin properties. Int J Pharmaceut 352:263–272

    Article  CAS  Google Scholar 

  • Barbosa-Barros L, de la Maza A, Estelrich J, Linares AM, Feliz M, Walther P, Pons R, López O (2008b) Penetration and growth of DPPC/DHPC bicelles inside the stratum corneum of the skin. Langmuir 24:5700–5706

    Article  PubMed  CAS  Google Scholar 

  • Barbosa-Barros L, de la Maza A, López-Iglesias C, López O (2008c) Ceramide effects in the bicelle structure. Colloid Surf A 317:576–584

    Article  CAS  Google Scholar 

  • Barbosa-Barros L, Barba C, Rodriguez G, Cocera M, Coderch L, Lopez-Iglesias C, de la Maza A, Lopez O (2009a) Lipid nanostructures: self-assembly and effect on skin properties. Mol Pharmaceut 6:1237–1245

    Article  CAS  Google Scholar 

  • Barbosa-Barros L, de la Maza A, Walther P, Linares AM, Feliz M, Estelrich J, López O (2009b) Use of high-pressure freeze fixation and freeze fracture electron microscopy to study the influence of the phospholipid molar ratio in the morphology and alignment of bicelles. J Microsc 233:35–41

    Article  PubMed  CAS  Google Scholar 

  • Barbosa-Barros L, Rodriguez G, Barba C, Cocera M, Rubio L, Estelrich J, Lopez-Iglesias C, de la Maza A, Lopez O (2012) Bicelles: lipid nanostructured platforms with potential dermal applications. Small (Weinheim an der Bergstrasse, Germany) 8:807–818

  • Bian JR, Roberts MF (1990) Phase separation in short-chain lecithin/gel-state long-chain lecithin aggregates. Biochemistry 29:7928–7935

    Article  PubMed  CAS  Google Scholar 

  • Bragg WL (1913) The diffraction of short electromagnetic waves by a crystal. Proceed Camb Philos Soc 17:43–57

    CAS  Google Scholar 

  • Caminiti R, Caracciolo G, Pisani M, Bruni P (2005) Effect of hydration on the long-range order of lipid multilayers investigated by in situ time-resolved energy dispersive x-ray diffraction. Chem Phys Lett 409:331–336

    Article  CAS  Google Scholar 

  • Chen L, Yu Z, Quinn PJ (2007) The partition of cholesterol between ordered and fluid bilayers of phosphatidylcholine: a synchrotron X-ray diffraction study. Biochim Biophys Acta 1768:2873–2881

    Article  PubMed  CAS  Google Scholar 

  • Cócera M, López O, Estelrich J, Parra JL, de la Maza A (2002) Adsorption of sodium lauryl ether sulfate on liposomes by means of a fluorescent probe: effect of the ethylene oxide groups. Langmuir 18:8250–8254

    Article  Google Scholar 

  • Danino D, Talmon Y, Zana R (1997) Vesicle-to-micelle transformation in systems containing dimeric surfactants. J Colloid Interf Sci 185:84–93

    Article  CAS  Google Scholar 

  • de la Maza A, Manich AM, Parra JL (1997) Intermediate aggregates resulting in the interaction of bile salts with liposomes studied by transmission electron microscopy and light scattering techniques. J Microsc 186:75–83

    Article  Google Scholar 

  • Gabriel NE, Roberts MF (1986) Interaction of short-chain lecithin with long-chain phospholipids: characterization of vesicles that form spontaneously. Biochemistry 25:2812–2821

    Article  PubMed  CAS  Google Scholar 

  • Hauser H (2000) Short-chain phospholipids as detergents. Biochim Biophys Acta 1508:164–181

    Article  PubMed  CAS  Google Scholar 

  • Honeywell-Nguyen PL, Frederik PM, Bomans PH, Junginger HE, Bouwstra JA (2002) Transdermal delivery of pergolide from surfactant-based elastic and rigid vesicles: characterization and in vitro transport studies. Pharm Res 19:991–997

    Article  PubMed  CAS  Google Scholar 

  • Hou D, Xie C, Huang K, Zhu C (2003) The production and characteristics of solid lipid nanoparticles (SLNs). Biomaterials 24:1781–1785

    Article  PubMed  CAS  Google Scholar 

  • Kessi J, Poiree JC, Wehrli E, Bachofen R, Semenza G, Hauser H (1994) Short-chain phosphatidylcholines as superior detergents in solubilizing membrane proteins and preserving biological activity. Biochemistry 33:10825–10836

    Article  PubMed  CAS  Google Scholar 

  • Lopez RF, Seto JE, Blankschtein D, Langer R (2011) Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate. Biomaterials 32:933–941

    Article  PubMed  CAS  Google Scholar 

  • López O, de la Maza A, Coderch L, López-Iglesias C, Parra J (1998) Direct formation of mixed micelles in the solubilization of phospholipid liposomes by Triton X-100. FEBS Lett 426:314–318

    Article  PubMed  Google Scholar 

  • Mannock DA, Lewis RN, McElhaney RN (2010) A calorimetric and spectroscopic comparison of the effects of ergosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Biochim Biophys Acta 1798:376–388

    Article  PubMed  CAS  Google Scholar 

  • Meyer HW, Richter W (2001) Freeze-fracture studies on lipids and membranes. Micron 32:615–644

    Article  PubMed  CAS  Google Scholar 

  • Mihailescu M, Vaswani RG, Jardon-Valadez E, Castro-Roman F, Freites JA, Worcester DL, Chamberlin AR, Tobias DJ, White SH (2011) Acyl-chain methyl distributions of liquid-ordered and -disordered membranes. Biophys J 100:1455–1462

    Article  PubMed  CAS  Google Scholar 

  • Miteva M, Richter S, Elsner P, Fluhr JW (2006) Approaches for optimizing the calibration standard of TewameterTM300. Exp Dermatol 15:904–912

    Article  PubMed  Google Scholar 

  • Nilsson A, Holmgren A, Lindblom G (1991) Fourier-transform infrared spectroscopy study of dioleoylphosphatidylcholine and monooleoylglycerol in lamellar and cubic liquid crystals. Biochemistry 30:2126–2133

    Article  PubMed  CAS  Google Scholar 

  • Pabst G, Kucerka N, Nieh MP, Rheinstadter MC, Katsaras J (2010) Applications of neutron and X-ray scattering to the study of biologically relevant model membranes. Chem Phys Lipids 163:460–479

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos-Sternberg B (2005) Comparison of freeze-fracture- with cryo-electron microscopy on molecular assemblies suitable for drug & gene delivery. Microsc Microanal 11:1048–1049

    Article  Google Scholar 

  • Parry MJ, Hagen M, Mouritsen OG, Kinnunen PK, Alakoskela JM (2010) Interlamellar coupling of phospholipid bilayers in liposomes: an emergent property of lipid rearrangement. Langmuir 26:4909–4915

    Article  PubMed  CAS  Google Scholar 

  • Pereira-Lachataignerais J, Pons R, Amenitsch H, Rappolt M, Sartori B, López O (2006) Effect of sodium dodecyl sulfate at different hydration conditions on dioleoyl phosphatidylcholine bilayers studied by grazing incidence x-ray diffraction. Langmuir 22:5256–5260

    Article  PubMed  CAS  Google Scholar 

  • Ramos J, Imaz A, Callejas-Fernández J, Barbosa-Barros L, Estelrich J, Quesada-Pérez M, Forcada J (2011) Soft nanoparticles (thermo-responsive nanogels and bicelles) with biotechnological applications: from synthesis to simulation through colloidal characterization. Soft Matter. doi:10.1039/C0SM01409E

    Google Scholar 

  • Rodríguez G, Barbosa-Barros L, Rubio L, Cócera M, Díez A, Estelrich J, Pons R, Caelles J, de la Maza A, López O (2009) Conformational changes in stratum corneum lipids by effect of bicellar systems. Langmuir 25:10595–10603

    Article  PubMed  Google Scholar 

  • Rodríguez G, Rubio L, Cócera M, Estelrich J, Pons R, de la Maza A, López O (2010) Application of bicellar systems on skin: diffusion and molecular organization effects. Langmuir 26:10578–10584

    Article  PubMed  Google Scholar 

  • Rodríguez G, Cócera M, Rubio L, López-Iglesias C, Pons R, de la Maza A, López O (2012) A unique bicellar nanosystem combining two effects on stratum corneum lipids. Mol Pharmaceut 9:482–491

    Article  Google Scholar 

  • Rubio L, Alonso C, Rodriguez G, Barbosa-Barros L, Coderch L, de la Maza A, Parra JL, Lopez O (2010) Bicellar systems for in vitro percutaneous absorption of diclofenac. Int J Pharmaceut 386:108–113

    Article  CAS  Google Scholar 

  • Schaffran T, Li J, Karlsson G, Edwards K, Winterhalter M, Gabel D (2010) Interaction of N,N,N-trialkylammonioundecahydro-closo-dodecaborates with dipalmitoyl phosphatidylcholine liposomes. Chem Phys Lipids 163:64–73

    Article  PubMed  CAS  Google Scholar 

  • Shah PP, Desai PR, Patel AR, Singh MS (2012) Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials 33:1607–1617

    Article  PubMed  CAS  Google Scholar 

  • Soong R, Macdonald PM (2009) Water diffusion in bicelles and the mixed bicelle model. Langmuir 25:380–390

    Article  PubMed  CAS  Google Scholar 

  • Strey R, Jahn W, Porte G, Bassereau P (1990) Freeze fracture electron microscopy of dilute lamellar and anomalous isotropic (L3) phases. Langmuir 6:1635–1639

    Article  CAS  Google Scholar 

  • Takajo Y, Matsuki H, Matsubara H, Tsuchiya K, Aratono M, Yamanaka M (2010) Structural and morphological transition of long-chain phospholipid vesicles induced by mixing with short-chain phospholipid. Colloid Surf B 76:571–576

    Article  CAS  Google Scholar 

  • Triba MN, Devaux PF, Warschawski DE (2006) Effects of lipid chain length and unsaturation on bicelles stability. A phosphorus NMR study. Biophys J 91:1357–1367

    Article  PubMed  CAS  Google Scholar 

  • Ulrich AS, Sami M, Watts A (1994) Hydration of DOPC bilayers by differential scanning calorimetry. Biochim Biophys Acta 1191:225–230

    Article  PubMed  CAS  Google Scholar 

  • Van Dam L, Karlsson G, Edwards K (2006) Morphology of magnetically aligning DMPC/DHPC aggregates-perforated sheets, not disks. Langmuir 28:3280–3285

    Google Scholar 

  • Videira RA, Antunes-Madeira MC, Madeira VM (1999) Perturbations induced by alpha- and beta-endosulfan in lipid membranes: a DSC and fluorescence polarization study. Biochim Biophys Acta 1419:151–163

    Article  PubMed  CAS  Google Scholar 

  • Vold RR, Prosser RS (1996) Magnetically oriented phospholipid bilayered micelles for structural studies of polypeptides. Does the ideal bicelle exist? J Magn Reson B 113:267–271

    Article  CAS  Google Scholar 

  • Whiles JA, Deems R, Vold RR, Dennis EA (2002) Bicelles in structure–function studies of membrane-associated proteins. Bioorg Chem 30:431–442

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Huang HW (2003) A rhombohedral phase of lipid containing a membrane fusion intermediate structure. Biophys J 84:1808–1817

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz E, Borchert H-H (2006) Effect of lipid-containing, positively charged nanoemulsions on skin hydration, elasticity and erythema: an in vivo study. Int J Pharmaceut 307:232–238

    Article  CAS  Google Scholar 

  • Zhu Z, Xie C, Liu Q, Zhen X, Zheng X, Wu W, Li R, Ding Y, Jiang X, Liu B (2011) The effect of hydrophilic chain length and iRGD on drug delivery from poly(epsilon-caprolactone)-poly(N-vinylpyrrolidone) nanoparticles. Biomaterials 32:9525–9535

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Ramon Pons, Jaume Caelles, Josep Carrilla and Rocío Vicente for expert technical assistance. M. Cócera is funded by the JAE-DOC program from CSIC (co-funded by FSE). This work was supported by funds from CICYT (CTQ 2010-16964) and from Generalitat de Catalunya (2009 SGR 1212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gelen Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, G., Rubio, L., Barba, C. et al. Characterization of new DOPC/DHPC platform for dermal applications. Eur Biophys J 42, 333–345 (2013). https://doi.org/10.1007/s00249-012-0878-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-012-0878-5

Keywords

Navigation