Skip to main content
Log in

Acoustic levitation: recent developments and emerging opportunities in biomaterials research

  • ORIGINAL PAPER
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Containerless sample environments (levitation) are useful for study of nucleation, supercooling, and vitrification and for synthesis of new materials, often with non-equilibrium structures. Elimination of extrinsic nucleation by container walls extends access to supercooled and supersaturated liquids under high-purity conditions. Acoustic levitation is well suited to the study of liquids including aqueous solutions, organics, soft materials, polymers, and pharmaceuticals at around room temperature. This article briefly reviews recent developments and applications of acoustic levitation in materials R&D. Examples of experiments yielding amorphous pharmaceutical materials are presented. The implementation and results of experiments on supercooled and supersaturated liquids using an acoustic levitator at a high-energy X-ray beamline are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Atassi F, Mao C, Masadeh AS, Byrn SR (2010) Solid-state characterization of amorphous and mesomorphous calcium ketoprofen. J Pharm Sci 99:3684–3697

    PubMed  CAS  Google Scholar 

  • Baird JA, Van Eerdenbrugh B, Taylor LS (2010) A classification system to assess the crystallization tendency of organic molecules from undercooled melts. J Pharm Sci 99:3787–3806

    Article  PubMed  CAS  Google Scholar 

  • Barmatz M, Collas P (1985) Acoustic radiation potential on a sphere in plane, cylindrical, and spherical standing wave fields. J Acoust Soc Am 77:928

    Article  Google Scholar 

  • Benmore CJ, Weber JKR (2011) Amorphization of molecular liquids of pharmaceutical drugs by acoustic levitation. PRX 1:011004

    Google Scholar 

  • Benmore CJ, Weber JKR, Wilding MC, Du J, Parise JB (2010) Temperature dependent structural heterogeneity in calcium silicate liquids. Phys Rev B 82:224202

    Article  Google Scholar 

  • Chung SK, Trinh EH (1998) Bottom of form containerless protein crystal growth in rotating levitated drops. Bottom Form 194:384–397

    CAS  Google Scholar 

  • de Castro MDL, Capote FP (2007) Techniques and instrumentation in analytical chemistry, analytical applications of ultrasound, vol 26. Elsevier, Amsterdam, pp 268–275

    Google Scholar 

  • Drewitt JWE, Jahn S, Cristiglio V, Bytchkov A, Leydier M, Brassamin S, Fischer HE, Hennet L (2011) The structure of liquid calcium aluminates as investigated using neutron and high energy X-ray diffraction in combination with molecular dynamics simulation method. J Phys Condens Matter 23:155101

    Article  PubMed  Google Scholar 

  • Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Häusermann D (1996) Two-dimensional detector software: from real detector to idealized image or two-theta scan. High Press Res 14:235

    Article  Google Scholar 

  • Hench LL, Wilson J (1993) An Introduction to bioceramics. World Scientific, Singapore, pp 139–199

    Google Scholar 

  • Kawakami K (2009) Current status of amorphous formulation and other special dosage forms as formulations for early clinical phases. J Pharm Sci 98:2875

    Article  PubMed  CAS  Google Scholar 

  • Knutsson M (2006) Acoustic levitation—optimization of instrumental parameters of the levmac instrument for protein crystallization application, bachelor’s thesis, LTH School of Engineering, Lund University, Helsingborg, Sweden

  • Kohara S, Suzuya K, Takeuchi K, Loong C-K, Grimsditch M, Weber JKR, Tangeman JA, Key TS (2004) Glass formation at the limits of insufficient network formers. Science 303:1649

    Article  PubMed  CAS  Google Scholar 

  • Law D, Schmitt EA, Marsh KC, Everitt EA, Wang W, Fort JJ, Krill SL (2004) Ritonavir–PEG 8000 amorphous solid dispersions: in vitro and in vivo evaluations. J Pharm Sci 93:563

    Article  PubMed  CAS  Google Scholar 

  • Leiterer J, Grabolle M, Rurack K, Resch-Genger U, Ziegler J, Nann T, Panne U (2008a) Acoustically levitated droplets: a contactless sampling method for fluorescence studies. Ann NY Acad Sci 1130:78–84

    Article  PubMed  CAS  Google Scholar 

  • Leiterer J, Delissen F, Emmerling F, Thunemann AF, Panne U (2008b) Structure analysis using acoustically levitated droplets. Anal Bioanal Chem 391:1221

    Article  PubMed  CAS  Google Scholar 

  • Lierke EG, Grossenbach R, Flogel K, Clancy P (1983) In: McAvoy BR (ed) IEEE Proceedings on Ultrasonics, vol 2. IEEE, New York, pp 1130–1139

  • Lorch EA (1969) Neutron diffraction by germania, silica and radiation-damaged silica glasses. J Phys C Solid State Phys 2:229

    Article  Google Scholar 

  • Lu J, Rohani S (2009) Polymorphism and crystallization of active pharmaceutical ingredients (APIs). Current Med Chem 16:884

    Article  CAS  Google Scholar 

  • Mallamace F, Branca C, Corsaro C, Leone N, Spooren J, Chen S-H, Stanley HE (2010) Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature. Proc Natl Acad Sci 107:22457–22462

    Article  PubMed  CAS  Google Scholar 

  • Nagapudi K, Jona J (2008) Amorphous active pharmaceutical ingredients in preclinical studies: preparation, characterization, and formulation. Curr Bioact Comp 4:213–224

    Article  CAS  Google Scholar 

  • Neuefeind J, Benmore CJ, Weber JKR, Paschek D (2011) More accurate X-ray scattering data of deeply supercooled bulk liquid water. Mol Phys 109:279–288

    Article  CAS  Google Scholar 

  • Patani GA, LaVoie EJ (1996) Bioisosterism: a rational approach in drug design. Chem Rev 96:3147–3176

    Article  PubMed  CAS  Google Scholar 

  • Price DL (2010) High-temperature levitated materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Puskar L, Tuckermann R, Frosch T, Popp J, Ly V, McNaughton D, Wood BR (2007) Raman acoustic levitation spectroscopy of red blood cells and plasmodium falciparum trophozoites. Lab Chip 9:1125–1131

    Article  Google Scholar 

  • Qiu XY, Thompson JW, Billinge SJL (2004) PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data. J Appl Cryst 37:678

    Article  CAS  Google Scholar 

  • Rey CA, Merkley DR, Hammarlund GR, Danley TJ (1987) Acoustic levitation technique for containerless processing at high temperatures in space. J Acoust Soc Am 82:106

    Article  Google Scholar 

  • Rindone GE (ed) (1982) Materials processing in the reduced gravity environment of space, MRS Symposium Proceedings, vol 9. Elsevier, New York

  • Santesson S, Cedergren-Zeppezauer ES, Johansson T, Laurell T, Nilsson J, Nilsson S (2003) Screening of nucleation conditions using levitated drops for protein crystallization. Anal Chem 75:1733–1740

    Article  PubMed  CAS  Google Scholar 

  • Shahrokhi F, Hazelrigg GA, Bayuzick RJ (1990) Space commercialization: platforms and processing, progress in astronautics and aeronautics, vol 127. AIAA Inc., Washington DC, pp 179–201

    Google Scholar 

  • Trinh EH (1985) Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity. Rev Sci Instrum 56:2059

    Article  CAS  Google Scholar 

  • Weber JKR, Rey CA, Neuefeind J, Benmore CJ (2009) Acoustic levitator for structure measurements on low temperature liquid droplets. Rev Sci Instrum 80:083904

    Article  PubMed  CAS  Google Scholar 

  • Whymark RR (1975) Acoustic field positioning for containerless processing. Ultrasonics 13:251

    Article  CAS  Google Scholar 

  • Willart JF, Descamps M (2008) Solid state amorphization of pharmaceuticals. Mol Pharm 5:905

    Article  PubMed  CAS  Google Scholar 

  • Willart JF, Dujardin N, Dudognon E, Danède F, Descamps M (2010) Amorphization of sugar hydrates upon milling. Carbohydr Res 345:1613

    Article  PubMed  CAS  Google Scholar 

  • Xie WJ, Wei B (2001) Dependence of acoustic levitation capabilities on geometric parameters. Appl Phys Lett 79:881

    Article  CAS  Google Scholar 

  • Yu L (2001) Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev 48:27

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the US DOE, at Argonne National Laboratory under contract number DE-AC02-06CH11357. We thank Dr Louis Hennet at CNRS-Orleans and Le Studium for travel assistance to participate in Cosmetics and Pharmaceutics: New Trends in Biophysical Approaches, Feb. 14–15, 2011, Orleans, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. K. Weber.

Additional information

Special Issue: Biophysics of cosmetics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, R.J.K., Benmore, C.J., Tumber, S.K. et al. Acoustic levitation: recent developments and emerging opportunities in biomaterials research. Eur Biophys J 41, 397–403 (2012). https://doi.org/10.1007/s00249-011-0767-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-011-0767-3

Keywords

Navigation