Skip to main content
Log in

On a biophysical and mathematical model of Pgp-mediated multidrug resistance: understanding the “space–time” dimension of MDR

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Multidrug resistance (MDR) is explained by drug transporters with a drug-handling activity. Despite much work, MDR remains multifaceted, and several conditions are required to generate drug resistance. The drug pumping was conceptually described using a kinetic, i.e., temporal, approach. The re-emergence of physical biology has allowed us to take into account new parameters focusing on the notion of space. This, in turn, has given us important clues regarding the process whereby drug and transporter interact. We will demonstrate that the likelihood of drug-transporter meeting (i.e., the affinity) and thus interaction are also driven by the mechanical interaction between drug molecular weight (MW) and the membrane mechanical properties. This should allow us to mechanically control drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Note that “spatial organization of a system” does refer also to dimensions that we will see are crucial to drug transporter meeting probability. Indeed, diffusion properties are different in 1, 2 or 3 dimensions.

  2. The efficiency defined at the molecular levels is referred as the number of products created per unit of time.

  3. Note that in the following text, surface pressure or tension will be used without conceptual difference. In both cases they refer to the mechanical packing of lipids in membrane leaflets.

References

  • Aller SG, Yu J, Ward A, Weng Y, Chittaboina S, Zhuo R, Harrell PM, Trinh YT, Zhang Q, Urbatsch IL, Chang G (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323:1718–1722

    Article  PubMed  CAS  Google Scholar 

  • Ambudkar SV, Kim IW, Sauna ZE (2006) The power of the pump: mechanisms of action of P-glycoprotein (ABCB1). Eur J Pharm Sci 27:392–400

    Article  PubMed  CAS  Google Scholar 

  • Ayrton A, Morgan P (2008) Role of transport proteins in drug discovery and development: a pharmaceutical perspective. Xenobiotica 38:676–708

    Article  PubMed  CAS  Google Scholar 

  • Biedler JL, Riehm H (1970) Cellular resistance to actinomycin D in Chinese hamster cells in vitro: cross-resistance, radioautographic, and cytogenetic studies. Cancer Res 30:1174–1184

    PubMed  CAS  Google Scholar 

  • Borgnia MJ, Eytan GD, Assaraf YG (1996) Competition of hydrophobic peptides, cytotoxic drugs, and chemosensitizers on a common P-glycoprotein pharmacophore as revealed by its ATPase activity. J Biol Chem 271:3163–3171

    Article  PubMed  CAS  Google Scholar 

  • Borst P, Elferink RO (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71:537–592

    Article  PubMed  CAS  Google Scholar 

  • Buxbaum E (1999) Co-operating ATP sites in the multiple drug resistance transporter Mdr1. Eur J Biochem 265:54–63

    Article  PubMed  CAS  Google Scholar 

  • Chan LM, Lowes S, Hirst BH (2004) The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. Eur J Pharm Sci 21:25–51

    Article  PubMed  CAS  Google Scholar 

  • Chang XB (2007) A molecular understanding of ATP-dependent solute transport by multidrug resistance-associated protein MRP1. Cancer Metastasis Rev 26:15–37

    Article  PubMed  CAS  Google Scholar 

  • Dano K (1973) Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells. Biochim Biophys Acta 323:466–483

    Article  PubMed  CAS  Google Scholar 

  • Devaux PF (2000) Is lipid translocation involved during endo and exocytosis? Biochimie 82:497–509

    Article  PubMed  CAS  Google Scholar 

  • Drews J (2003) Strategic trends in the drug industry. Drug Discov Today 8:411–420

    Article  PubMed  Google Scholar 

  • Eytan GD, Regev R, Oren G, Hurwitz CD, Assaraf YG (1997) Efficiency of P-glycoprotein-mediated exclusion of rhodamine dyes from multidrug-resistant cells is determined by their passive transmembrane movement rate. Eur J Biochem 248:104–112

    Article  PubMed  CAS  Google Scholar 

  • Farge E (1995) Increased vesicle endocytosis due to an increase in the plasma membrane phosphatidylserine concentration. Biophys J 69:2501–2506

    Article  PubMed  CAS  Google Scholar 

  • Farge E, Devaux PF (1992) Shape changes of giant liposomes induced by an asymmetric transmembrane distribution of phospholipids. Biophys J 61:347–357

    Article  PubMed  CAS  Google Scholar 

  • Farge E, Bitbol M, Devaux PF (1990) Biomembrane elastic response to intercalation of amphiphiles. Eur Biophys J 19:69–72

    Article  PubMed  CAS  Google Scholar 

  • Farge E, Ojcius DM, Subtil A, Dautry-Varsat A (1999) Enhancement of endocytosis due to aminophospholipid transport across the plasma membrane of living cells. Am J Physiol 276:C725–C733

    PubMed  CAS  Google Scholar 

  • Fromm MF (2003) Importance of P-glycoprotein for drug disposition in humans. Eur J Clin Invest 33(Suppl 2):6–9

    Article  PubMed  CAS  Google Scholar 

  • Gleeson MP (2008) Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem 51:817–834

    Article  PubMed  CAS  Google Scholar 

  • Gombar VK, Polli JW, Humphreys JE, Wring SA, Serabjit-Singh CS (2004) Predicting P-glycoprotein substrates by a quantitative structure-activity relationship model. J Pharm Sci 93:957–968

    Article  PubMed  CAS  Google Scholar 

  • Higgins CF (2007) Multiple molecular mechanisms for multidrug resistance transporters. Nature 446:749–757

    Article  PubMed  CAS  Google Scholar 

  • Hochmuth FM, Shao JY, Dai J, Sheetz MP (1996) Deformation and flow of membrane into tethers extracted from neuronal growth cones. Biophys J 70:358–369

    Article  PubMed  CAS  Google Scholar 

  • Hou TJ, Xu XJ (2003) ADME evaluation in drug discovery. 3. Modeling blood–brain barrier partitioning using simple molecular descriptors. J Chem Inf Comput Sci 43:2137–2152

    PubMed  CAS  Google Scholar 

  • Israelachvili JN, Marcelja S, Horn RG (1980) Physical principles of membrane organization. Q Rev Biophys 13:121–200

    Article  PubMed  CAS  Google Scholar 

  • Juliano RL, Ling V (1976) A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455:152–162

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Barroso M, Samanta R, Greenberger L, Sztul E (1997) Experimentally induced changes in the endocytic traffic of P-glycoprotein alter drug resistance of cancer cells. Am J Physiol 273:C687–C702

    PubMed  CAS  Google Scholar 

  • Kimura Y, Morita SY, Matsuo M, Ueda K (2007) Mechanism of multidrug recognition by MDR1/ABCB1. Cancer Sci 98:1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Koval M, Pagano RE (1991) Intracellular transport and metabolism of sphingomyelin. Biochim Biophys Acta 1082:113–125

    PubMed  CAS  Google Scholar 

  • Lange Y, Swaisgood MH, Ramos BV, Steck TL (1989) Plasma membranes contain half the phospholipid and 90% of the cholesterol and sphingomyelin in cultured human fibroblasts. J Biol Chem 264:3786–3793

    PubMed  CAS  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Berridge G, Higgins CF, Mistry P, Charlton P, Callaghan R (2000a) Communication between multiple drug binding sites on P-glycoprotein. Mol Pharmacol 58:624–632

    PubMed  CAS  Google Scholar 

  • Martin C, Berridge G, Mistry P, Higgins C, Charlton P, Callaghan R (2000b) Drug binding sites on P-glycoprotein are altered by ATP binding prior to nucleotide hydrolysis. Biochemistry 39:11901–11906

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Higgins CF, Callaghan R (2001) The vinblastine binding site adopts high- and low-affinity conformations during a transport cycle of P-glycoprotein. Biochemistry 40:15733–15742

    Article  PubMed  CAS  Google Scholar 

  • Okabe M, Szakacs G, Reimers MA, Suzuki T, Hall MD, Abe T, Weinstein JN, Gottesman MM (2008) Profiling SLCO and SLC22 genes in the NCI-60 cancer cell lines to identify drug uptake transporters. Mol Cancer Ther 7:3081–3091

    Article  PubMed  CAS  Google Scholar 

  • Oprea TI (2002) Current trends in lead discovery: are we looking for the appropriate properties? Mol Divers 5:199–208

    Article  PubMed  Google Scholar 

  • Palm K, Stenberg P, Luthman K, Artursson P (1997) Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm Res 14:568–571

    Article  PubMed  CAS  Google Scholar 

  • Proudfoot JR (2002) Drugs, leads, and drug-likeness: an analysis of some recently launched drugs. Bioorg Med Chem Lett 12:1647–1650

    Article  PubMed  CAS  Google Scholar 

  • Quinn RJ, Carroll AR, Pham NB, Baron P, Palframan ME, Suraweera L, Pierens GK, Muresan S (2008) Developing a drug-like natural product library. J Nat Prod 71:464–468

    Article  PubMed  CAS  Google Scholar 

  • Rauch C (2009a) On the relationship between drug’s size, cell membrane mechanical properties and high levels of multi drug resistance: a comparison to published data. Eur Biophys J 38:537–546

    Article  PubMed  CAS  Google Scholar 

  • Rauch C (2009b) Toward a mechanical control of drug delivery. On the relationship between Lipinski’s 2nd rule and cytosolic pH changes in doxorubicin resistance levels in cancer cells: a comparison to published data. Eur Biophys J 38:829–846

    Article  PubMed  CAS  Google Scholar 

  • Rauch C, Farge E (2000) Endocytosis switch controlled by transmembrane osmotic pressure and phospholipid number asymmetry. Biophys J 78:3036–3047

    Article  PubMed  CAS  Google Scholar 

  • Rauch C, Pluen A (2007) Multi drug resistance-dependent “vacuum cleaner” functionality potentially driven by the interactions between endocytosis, drug size and Pgp-like transporters surface density. Eur Biophys J 36:121–131

    Article  PubMed  CAS  Google Scholar 

  • Raucher D, Sheetz MP (1999) Characteristics of a membrane reservoir buffering membrane tension. Biophys J 77:1992–2002

    Article  PubMed  CAS  Google Scholar 

  • Regev R, Eytan GD (1997) Flip-flop of doxorubicin across erythrocyte and lipid membranes. Biochem Pharmacol 54:1151–1158

    Article  PubMed  CAS  Google Scholar 

  • Roepe PD (1998) The P-glycoprotein efflux pump: how does it transport drugs? J Membr Biol 166:71–73

    Article  PubMed  CAS  Google Scholar 

  • Roepe PD, Martiney JA (1999) Are ion-exchange processes central to understanding drug-resistance phenomena? Trends Pharmacol Sci 20:62–65

    Article  PubMed  CAS  Google Scholar 

  • Roepe PD, Wei LY, Cruz J, Carlson D (1993) Lower electrical membrane potential and altered pHi homeostasis in multidrug-resistant (MDR) cells: further characterization of a series of MDR cell lines expressing different levels of P-glycoprotein. Biochemistry 32:11042–11056

    Article  PubMed  CAS  Google Scholar 

  • Roepe PD, Wei LY, Hoffman MM, Fritz F (1996) Altered drug translocation mediated by the MDR protein: direct, indirect, or both? J Bioenerg Biomembr 28:541–555

    Article  PubMed  CAS  Google Scholar 

  • Romsicki Y, Sharom FJ (1998) The ATPase and ATP-binding functions of P-glycoprotein—modulation by interaction with defined phospholipids. Eur J Biochem 256:170–178

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg MF, Velarde G, Ford RC, Martin C, Berridge G, Kerr ID, Callaghan R, Schmidlin A, Wooding C, Linton KJ, Higgins CF (2001) Repacking of the transmembrane domains of P-glycoprotein during the transport ATPase cycle. EMBO J 20:5615–5625

    Article  PubMed  CAS  Google Scholar 

  • Rudnick J, Gaspari G (2004) Elements of random walk. Cambridge University Press, Cambridge

    Google Scholar 

  • Santai CT, Fritz F, Roepe PD (1999) Effects of ion gradients on H+ transport mediated by human MDR 1 protein. Biochemistry 38:4227–4234

    Article  PubMed  CAS  Google Scholar 

  • Sauna ZE, Ambudkar SV (2000) Evidence for a requirement for ATP hydrolysis at two distinct steps during a single turnover of the catalytic cycle of human P-glycoprotein. Proc Natl Acad Sci USA 97:2515–2520

    Article  PubMed  CAS  Google Scholar 

  • Schinkel AH (1999) P-Glycoprotein, a gatekeeper in the blood–brain barrier. Adv Drug Deliv Rev 36:179–194

    Article  PubMed  CAS  Google Scholar 

  • Sehested M, Skovsgaard T, van Deurs B, Winther-Nielsen H (1987a) Increase in nonspecific adsorptive endocytosis in anthracycline- and vinca alkaloid-resistant Ehrlich ascites tumor cell lines. J Natl Cancer Inst 78:171–179

    PubMed  CAS  Google Scholar 

  • Sehested M, Skovsgaard T, van Deurs B, Winther-Nielsen H (1987b) Increased plasma membrane traffic in daunorubicin resistant P388 leukaemic cells. Effect of daunorubicin and verapamil. Br J Cancer 56:747–751

    PubMed  CAS  Google Scholar 

  • Seifert U, Berndl K, Lipowsky R (1991) Shape transformations of vesicles: phase diagram for spontaneous-curvature and bilayer-coupling models. Phys Rev A 44:1182–1202

    Article  PubMed  CAS  Google Scholar 

  • Seigneuret M, Devaux PF (1984) ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes. Proc Natl Acad Sci USA 81:3751–3755

    Article  PubMed  CAS  Google Scholar 

  • Seigneuret M, Zachowski A, Hermann A, Devaux PF (1984) Asymmetric lipid fluidity in human erythrocyte membrane: new spin-label evidence. Biochemistry 23:4271–4275

    Article  PubMed  CAS  Google Scholar 

  • Shapiro AB, Ling V (1995) Reconstitution of drug transport by purified P-glycoprotein. J Biol Chem 270:16167–16175

    Article  PubMed  CAS  Google Scholar 

  • Shapiro AB, Ling V (1997) Extraction of Hoechst 33342 from the cytoplasmic leaflet of the plasma membrane by P-glycoprotein. Eur J Biochem 250:122–129

    Article  PubMed  CAS  Google Scholar 

  • Shapiro AB, Corder AB, Ling V (1997) P-glycoprotein-mediated Hoechst 33342 transport out of the lipid bilayer. Eur J Biochem 250:115–121

    Article  PubMed  CAS  Google Scholar 

  • Sharom FJ, Lugo MR, Eckford PD (2005) New insights into the drug binding, transport and lipid flippase activities of the p-glycoprotein multidrug transporter. J Bioenerg Biomembr 37:481–487

    Article  PubMed  CAS  Google Scholar 

  • Shilling RA, Venter H, Velamakanni S, Bapna A, Woebking B, Shahi S, van Veen HW (2006) New light on multidrug binding by an ATP-binding-cassette transporter. Trends Pharmacol Sci 27:195–203

    Article  PubMed  CAS  Google Scholar 

  • Simon S (2001) The multiple mechanisms of multidrug resistance and cellular pH. Novartis Found Symp 240:269–281 (discussion 282–9)

    Article  PubMed  CAS  Google Scholar 

  • Simon S, Roy D, Schindler M (1994) Intracellular pH and the control of multidrug resistance. Proc Natl Acad Sci USA 91:1128–1132

    Article  PubMed  CAS  Google Scholar 

  • van Meer G (1989) Lipid traffic in animal cells. Annu Rev Cell Biol 5:247–275

    Article  PubMed  Google Scholar 

  • Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    Article  PubMed  CAS  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    PubMed  CAS  Google Scholar 

  • Zhang Y, Benet LZ (2001) The gut as a barrier to drug absorption: combined role of cytochrome P450 3A and P-glycoprotein. Clin Pharmacokinet 40:159–168

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Medical Research Council (RA3805) and the University of Nottingham (NRF4305). Vasiliki Panagiotopoulou is supported by the Marie Curie early stage training network MMBNOTT. Finally we also thank Holly Broom (3rd Year veterinary student) for helping us re-read the paper and suggesting some modifications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Rauch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panagiotopoulou, V., Richardson, G., Jensen, O.E. et al. On a biophysical and mathematical model of Pgp-mediated multidrug resistance: understanding the “space–time” dimension of MDR. Eur Biophys J 39, 201–211 (2010). https://doi.org/10.1007/s00249-009-0555-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0555-5

Keywords

Navigation