Skip to main content
Log in

Membrane Lipids as Indicators for Viable Bacterial Communities Inhabiting Petroleum Systems

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Microbial activity in petroleum reservoirs has been implicated in a suite of detrimental effects including deterioration of petroleum quality, increases in oil sulfur content, biofouling of steel pipelines and other infrastructures, and well plugging. Here, we present a biogeochemical approach, using phospholipid fatty acids (PLFAs), for detecting viable bacteria in petroleum systems. Variations within the bacterial community along water flow paths (producing well, topside facilities, and injection well) can be elucidated in the field using the same technique, as shown here within oil production plants in the Molasse Basin of Upper Austria. The abundance of PLFAs is compared to total cellular numbers, as detected by qPCR of the 16S rDNA gene, to give an overall comparison between the resolutions of both methods in a true field setting. Additionally, the influence of biocide applications on lipid- and DNA-based quantification was investigated. The first oil field, Trattnach, showed significant PLFA abundances and cell numbers within the reservoir and topside facilities. In contrast, the second field (Engenfeld) showed very low PLFA levels overall, likely due to continuous treatment of the topside facilities with a glutaraldehyde-based antimicrobial. In comparison, Trattnach is dosed once per week in a batch fashion. Changes within PLFA compositions across the flow path, throughout the petroleum production plants, point to cellular adaptation within the system and may be linked to shifts in the dominance of certain bacterial types in oil reservoirs versus topside facilities. Overall, PLFA-based monitoring provides a useful tool to assess the abundance and high-level taxonomic diversity of viable microbial populations in oil production wells, topside infrastructure, pipelines, and other related facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oils. Nature 426:344–352. doi:10.1038/nature02134

    Article  CAS  PubMed  Google Scholar 

  2. Beech IB, Sunner J (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Curr. Opin. Biotechnol. 15:181–186

    Article  CAS  PubMed  Google Scholar 

  3. McInerney MJ, Sublette KL (eds) (1997) Petroleum microbiology: biofouling, souring, and improved oil recovery. ASM Press, Washington DC

    Google Scholar 

  4. Magot M, Ollivier G, Patel GKC (2000) Microbiology of petroleum reservoirs. Anton. Leeuw. Int. J. Gen. Mol. Microbiol. 77:103–116. doi:10.1023/A:1002434330514

    Article  CAS  Google Scholar 

  5. Van Nostrand JD, He Z, Zhou J (2010) Analysis of microbial communities by functional gene arrays. In: Barton LL, Mandl M, Loy A (eds) Geomicrobiology: molecular and environmental perspective. Springer, Dordrecht

    Google Scholar 

  6. Grabowski A, Nercessian O, Fayolle F, Blanchet D, Jeanthon C (2005) Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol. Ecol. 54:427–443. doi:10.1016/j.resmic.2005.03.009

    Article  CAS  PubMed  Google Scholar 

  7. Connan J, Lacrampe-Coulombe G, Magot M (1996) Origin of gases in reservoirs. International Gas Research Conference, Government Institutes, Rockville, pp. 21–61

    Google Scholar 

  8. Röling WFM, Head IM, Larter SR (2003) The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects. Res. Microbiol. 154:321–328. doi:10.1016/S0923-2508(03)00086-X

    Article  PubMed  Google Scholar 

  9. Hallmann C, Schwark L, Grice K (2008) Community dynamics of anaerobic bacteria in deep petroleum reservoirs. Nat. Geosci. 1:588–591. doi:10.1038/ngeo260

    Article  CAS  Google Scholar 

  10. Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: a review. Biol Fert Soils 29:111–129. doi:10.1007/s003740050533

    Article  CAS  Google Scholar 

  11. Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. FEMS Microbiol. Ecol. 35:265–278. doi:10.1007/s002489900082

    Article  CAS  Google Scholar 

  12. Green CT, Scow KM (2000) Analysis of phospholipid fatty acids (PLFA) to characterize microbial communities in aquifers. Hydrogeol. J. 8:126–141. doi:10.1007/s100400050013

    Article  CAS  Google Scholar 

  13. White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979) Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40:51–62. doi:10.1007/BF00388810

    Article  CAS  PubMed  Google Scholar 

  14. Schubotz F, Lipp JS, Elvert M, Kasten S, Mollar XP, Zabel M, Bohrmann G, Hinrichs K-U (2011) Petroleum degradation and associated microbial signatures at the Chapopote asphalt volcano, Southern Gulf of Mexico. Geochim Cosmochim Ac 75:4377–4398. doi:10.1016/j.gca.2011.05.025

    Article  CAS  Google Scholar 

  15. Harvey HR, Fallon RD, Patton JS (1986) The effect of organic matter and oxygen on the degradation of bacterial membrane lipids in marine sediments. Geochim Cosmochim Ac 50:795–804. doi:10.1016/0016-7037(86)90355-8

    Article  CAS  Google Scholar 

  16. Petsch ST, Edwards KJ, Eglinton TI (2003) Abundance, distribution and δ13C analysis of microbial phospholipid-derived fatty acids in a black shale weathering profile. Org. Geochem. 34:731–743. doi:10.1016/S0146-6380(03)00040-8

    Article  CAS  Google Scholar 

  17. Vetter A, Mangelsdorf K, Wolfgramm M, Rauppach K, Schettler G, Vieth-Hillebrand A (2012) Variations in fluid chemistry and membrane phospholipid fatty acid composition of the bacterial community in a cold storage ground water system during clogging events. Appl. Geochem. 27:1278–1290. doi:10.1016/j.apgeochem.2012.02.022

    Article  CAS  Google Scholar 

  18. Vetter A, Mangelsdorf K, Schettler G, Seibt A, Wolfgramm M, Rauppach K, Vieth-Hillebrand A (2012) Fluid chemistry and impact of different operating modes on microbial community at Neubrandenburg heat storage (Northeast German Basin). Org. Geochem. 53:8–15. doi:10.1016/j.orggeochem.2012.08.008

    Article  CAS  Google Scholar 

  19. Oldenburg TBP, Larter SR, Adams JJ, Clements M, Hubert C, Rowan AK, Brown A, Head IM, Grigoriyan AA, Voordouw G, Fustic M (2009) Methods for recovery of microorganisms and intact microbial polar lipids from oil-water mixtures: laboratory experiments and natural well-head fluids. Anal. Chem. 81:4130–4136. doi:10.1021/ac8025515

    Article  CAS  PubMed  Google Scholar 

  20. Vestal JR, White DD (1989) Lipid analysis in microbial ecology—quantitative approaches to the study of microbial communities. Bioscience 39:535–541

    Article  CAS  PubMed  Google Scholar 

  21. Summit M, Peacock A, Ringelberg D, White DC, Baross JA (2000) Phospholipid fatty acid-derived microbial biomass and community dynamics in hot, hydrothermally influenced sediments from Middle Valley, Juan de Fuca Ridge. Proceedings of the Ocean Drilling Program, Scientific Results Volume 169: Chapter 3

  22. Aries E, Doumenq P, Artaud J, Molinet J, Bertrand JC (2001) Occurrence of fatty acids linked to non-phospholipid compounds in the polar fraction of a marine sedimentary extract from Carteau cove, France. Org. Geochem. 32:193–197. doi:10.1016/S0146-6380(00)00153-4

    Article  CAS  Google Scholar 

  23. Chang Y-J, Peacock AD, Long PE, Stephen JR, McKinley JP, MacNaughton SJ, Hussain AKMA, Saxton AM, White DC (2001) Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailing site. Appl Environ Microb 67:3149–3160. doi:10.1128/AEM.67.7.3149-3160.2001

    Article  CAS  Google Scholar 

  24. Pratt B, Riesen R, Johnston CG (2012) PLFA analyses of microbial communities associated with PAH-contaminated riverbank sediment. Environ. Microbiol. 64:680–691. doi:10.1007/s00248-012-0060-8

    CAS  Google Scholar 

  25. Li Y-L, Peacock AD, White DC, Geyer R, Zhang CL (2007) Spatial patterns of bacterial signature biomarkers in marine sediments of the Gulf of Mexico. Chem. Geol. 238:168–179. doi:10.1016/j.chemgeo.2006.11.007

    Article  CAS  Google Scholar 

  26. Dowling NJE, Widdel F, White DC (1986) Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulfate-reducers and other sulfide-forming bacteria. J. Gen. Microbiol. 132:1815–1825. doi:10.1099/00221287-132-7-1815

    CAS  Google Scholar 

  27. Sikkema J, De Bond JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59:201–222

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Guckert JB, Hood MA, White DC (1986) Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholera: increases in the cis/trans ratio and proportions of cyclopropyl fatty acids. Appl Environ Microb 52:794–801

    CAS  Google Scholar 

  29. Haubert D, Häggblom MM, Scheu S, Ruess L (2008) Effects of temperature and life stage on the fatty acid composition of Collembola. Eur J Soil Biol 44:213–219. doi:10.1016/j.ejsobi.2007.09.003

    Article  CAS  Google Scholar 

  30. Hazel JR, Williams EE (1991) The role of alterations in membrane lipid composition in enabling physiological adaptation in organisms to their physical environment. Prog. Lipid Res. 29:167–227. doi:10.1016/0163-7827(90)90002-3

    Article  Google Scholar 

  31. Petersen SO, Klug MJ (1994) Effects of sieving, storage and incubation temperature on the phospholipid fatty acid profile of a soil microbial community. Appl Environ Microb 60:2421–2430

    CAS  Google Scholar 

  32. Sachsenhofer RF, Gratzer R, Tschelaut W, Bechtel A (2006) Characterization of non-producible oil in Eocene reservoirs sandstones (Bad Hall Nord field, Alpine Foreland Basin, Austria). Mar Petrol Geol 23:1–15. doi:10.1016/j.marpetgeo.2005.07.002

    Article  CAS  Google Scholar 

  33. Hamilton W, Wagner L, Wessely G (1999) Oil and gas in Austria. Mitt. Österr. Geol. Ges. 92:235–262

    Google Scholar 

  34. Gratzer R, Bechtel A, Sachsenhofer RF, Linzer H-G, Reischenbacher D, Schulz H-M (2011) Oil-oil and oil-source correlations in the Alpine Foreland Basin of Austria: insights from biomarker and stable carbon isotope studies. Mar Petrol Geol 28:1171–1186. doi:10.1016/j.marpetgeo.2011.03.001

    Article  CAS  Google Scholar 

  35. Bechtel A, Gratzer R, Linzer H-G, Sachsenhofer RF (2013) Influence of migration distance, maturity and facies of the stable isotopic composition of alkanes and on carbazole distributions in oils and source rocks of the Alpine Foreland basin of Austria. Org. Geochem. 62:74–85. doi:10.1016/j.orggeochem.2013.07.008

    Article  CAS  Google Scholar 

  36. Reischenbacher D, Sachsenhofer RF (2011) Entstehung von Erdgas in der oberösterreichischen Molassezone: Daten und offene Fragen. Berg- und Hüttenmännische Monatshefte 156:455–460. doi:10.1007/s00501-011-0037-9

    Google Scholar 

  37. Andrews JN, Youngman MJ, Goldbrunner JE, Darling WG (1987) The geochemistry of formation waters in the Molasse Basin of Upper Austria. Environ Geol Water S 10:43–57. doi:10.1007/BF02588004

    Article  CAS  Google Scholar 

  38. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Phys 37:911–917. doi:10.1139/o59-099

    Article  CAS  Google Scholar 

  39. Zink K-G, Mangelsdorf K (2004) Efficient and rapid method for extraction of intact phospholipids from sediments combined with molecular structure elucidation using LC-ESI-MS-MS analysis. Anal. Bioanal. Chem. 380:798–812. doi:10.1007/s00216-004-2828-2

    Article  CAS  PubMed  Google Scholar 

  40. Müller K-D, Husmann H, Nalik HP (1990) A new and rapid method for the assay of bacterial fatty acids using high resolution capillary gas chromatography and trimethylsulfonium hydroxide. Zbl Bakt 274:174–182. doi:10.1016/S0934-8840(11)80100-3

    Article  Google Scholar 

  41. Jiang Y, Marang L, Kleerebezem R, Muyzer G, van Loosdrecht MCM (2011) Effect of temperature and cycle length on microbial competition in PHB-producing sequencing batch reactor. ISME J 5:896–907

    Article  CAS  PubMed  Google Scholar 

  42. Vroblesky DA, Bradley PM, Chapelle FH (1996) Influence of electron donor on the minimum sulfate concentration required for sulfate reduction in a petroleum hydrocarbon-contaminated aquifer. Environ Sci Technol 30:1377–1381. doi:10.1021/es950684o

    Article  CAS  Google Scholar 

  43. Sinninghe Damsté JS, Rijpstra WIC, Hopmans EC, Schouten S, Balk M, Stams AJM (2007) Structural characterization of diabolic acid-based tetraester, tetraether and mixed ether/ester, membrane-spanning lipids of bacteria from the order Thermotogales. Arch. Microbiol. 188:629–641. doi:10.1007/s00203-007-0284-z

    Article  Google Scholar 

  44. Huber R, Hannig M (2005) Thermotogales. In: Dworkin M et al. (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. Springer, New York

    Google Scholar 

  45. Dahle H, Garshol F, Madsen M, Birkeland N-K (2007) Microbial community structure analysis of produced water from a high-temperature North Sea oil-field. Anton Leeuw 93:37–49. doi:10.1007/s10482-007-9177-z

    Article  Google Scholar 

  46. Agrawal A, An D, Cavallaro A, Voordouw G (2014) Souring in low-temperature surface facilities of two high-temperature Argentinian oil fields. Appl Microbiol Biotechnol 98:8017–8029. doi:10.1007/s00253-014-5843-z

  47. Lipp JS, Hinrichs K-U (2009) Structural diversity and fate of intact polar lipids in marine sediments. Geochim Cosmochim Ac 73:6816–6833. doi:10.1016/j.gca.2009.08.003

    Article  CAS  Google Scholar 

  48. Coleman ML, Hedrick DB, Lovley DR, White DC, Pye K (1993) Reduction of Fe(III) in sediments by sulfate reducing bacteria. Nature 361:436–438. doi:10.1038/361436a0

    Article  CAS  Google Scholar 

  49. Smith CA, Phiefer CB, MacNaughton SJ, Peacock A, Burkhalter RS, Kirkegaard R, White DC (2000) Quantitative lipid biomarker detection of unculturable microbes and chlorine exposure in water distribution system biofilms. Water Res. 34:2683–2688. doi:10.1016/S0043-1354(00)00028-2

    Article  CAS  Google Scholar 

  50. Collins MD, Keddie RM, Kroppenstedt RM (1983) Lipid composition of Arthrobacter simplex, Arthrobacter tumescens, and possibly related taxa. Syst Appl Microbiol 4:18–26. doi:10.1016/S0723-2020(83)80030-7

    Article  CAS  PubMed  Google Scholar 

  51. White DC, Stair JO, Ringelberg DB (1996) Quantitative comparisons of in situ microbial diversity by signature biomarker analysis. J. Ind. Microbiol. 17:185–196

    Article  CAS  Google Scholar 

  52. Klamer M, Bååth E (1998) Microbial community dynamics during composting of straw material studied using phospholipid fatty acid analysis. FEMS Microbiol. Ecol. 27:9–20. doi:10.1111/j.1574-6941.1998.tb00521.x 9-20

    Article  CAS  Google Scholar 

  53. Russell NJ (1989) Functions of lipids: structural roles and membrane functions. In: Radledge C, Wilkinson SG (eds) Microbial Lipids 2. Academic Press, London, pp. 279–365

    Google Scholar 

Download references

Acknowledgements

This research project was supported by funding from Dow Microbial Control. We are grateful for the excellent collaboration with Rohöl-Aufsuchungs Aktiengesellschaft (RAG) and the University of Leoben. We thank two anonymous reviewers for their constructive comments which helped to improve the manuscript. We would also like to kindly acknowledge technical support provided by Kristin Guenther, Cornelia Karger, and Maria Bade at the GFZ and Imke Widera at Dow Europe GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Wilkes.

Electronic Supplementary Material

Table S1

(DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gruner, A., Mangelsdorf, K., Vieth-Hillebrand, A. et al. Membrane Lipids as Indicators for Viable Bacterial Communities Inhabiting Petroleum Systems. Microb Ecol 74, 373–383 (2017). https://doi.org/10.1007/s00248-017-0954-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-0954-6

Keywords

Navigation