Skip to main content
Log in

Composition of Gut Microbiota in the Gibel Carp (Carassius auratus gibelio) Varies with Host Development

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

To understand how a bacteria-free fish gut ecosystem develops microbiota as the fish ages, we performed a 1-year study on the gut microbiota of hatchling gibel carp (Carassius auratus gibelio). Our results indicate that the gut microbial diversity increases significantly as the fish develop. The gut microbial community composition showed significant shifts corresponding to host age and appeared to shift at two time points despite consistent diet and environmental conditions, suggesting that some features of the gut microbial community may be determined by the host’s development. Dietary and environmental changes also seem to cause significant shifts in the fish gut microbial community. This study revealed that the gut microbiota of gibel carp assemble into distinct communities at different times during the host’s development and that this process is less affected by the surrounding environment than by the host diet and development. Community phylogenetic analyses based on the net relatedness index further showed that environmental filtering (host selection) deterministically governs the gut microbial community composition. More importantly, the influence of host-associated deterministic filtering tends to weaken significantly over the course of the host’s development. However, further studies are needed to assess whether this host development-dependent shift in gut microbiota will still exist under different rearing strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267

    Article  CAS  PubMed  Google Scholar 

  2. Fraune S, Bosch TCG (2010) Why bacteria matter in animal development and evolution. BioEssays 32:571–580

    Article  CAS  PubMed  Google Scholar 

  3. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, Chang EB, Gajewski TF (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:1084–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CPM, Poirier-Colame V, Roux A, Becharef S, Formenti S, Golden E, Cording S, Eberl G, Schlitzer A, Ginhoux F, Mani S, Yamazaki T, Jacquelot N, Enot DP, Berard M, Nigou J, Opolon P, Eggermont A, Woerther PL, Chachaty E, Chaput N, Robert C, Mateus C, Kroemer G, Raoult D, Boneca IG, Carbonnel F, Chamaillard M, Zitvogel L (2015) Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350:1079–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bakke I, Coward E, Andersen T, Vadstein O (2015) Selection in the host structures the microbiota associated with developing cod larvae (Gadus morhua). Environ Microbiol 17:3914–3924

    Article  PubMed  Google Scholar 

  6. Bates JM, Mittge E, Kuhlman J, Baden KN, Cheesman SE, Guillemin K (2006) Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev Biol 297:374–386

    Article  CAS  PubMed  Google Scholar 

  7. Li XM, Yu YH, Feng WS, Yan QY, Gong YC (2012) Host species as a strong determinant of the intestinal microbiota of fish larvae. J Microbiol 50:29–37

    Article  CAS  PubMed  Google Scholar 

  8. Yang RB, Xie CX, Fan QX, Gao C, Fang LB (2010) Ontogeny of the digestive tract in yellow catfish Pelteobagrus fulvidraco larvae. Aquaculture 302:112–123

    Article  Google Scholar 

  9. He T, Xiao ZZ, Liu QH, Ma DY, Xu SH, Xiao YS, Li J (2012) Ontogeny of the digestive tract and enzymes in rock bream Oplegnathus fasciatus (Temminck et Schlegel 1844) larvae. Fish Physiol Biochem 38:297–308

    Article  CAS  PubMed  Google Scholar 

  10. Fjellheim AJ, Playfoot KJ, Skjermo J, Vadstein O (2012) Inter-individual variation in the dominant intestinal microbiota of reared Atlantic cod (Gadus morhua L.) larvae. Aquac Res 43:1499–1508

    Article  Google Scholar 

  11. Stephens WZ, Burns AR, Stagaman K, Wong S, Rawls JF, Guillemin K, Bohannan BJM (2016) The composition of the zebrafish intestinal microbial community varies across development. ISME J 10:644–654

    Article  PubMed  Google Scholar 

  12. Austin B (2006) The bacterial microflora of fish, revised. Sci World J 6:931–945

    Article  CAS  Google Scholar 

  13. Yan Q, Li J, Yu Y, Wang J, He Z, Van Nostrand JD, Kempher ML, Wu L, Wang Y, Liao L, Li X, Wu S, Ni J, Wang C, Zhou J (2016) Environmental filtering decreases with fish development for the assembly of gut microbiota. Environ Microbiol

  14. Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF (2011) Evidence for a core gut microbiota in the zebrafish. ISME J 5:1595–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rawls JF, Mahowald MA, Ley RE, Gordon JI (2006) Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127:423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sullam KE, Essinger SD, Lozupone CA, O’Connor MP, Rosen GL, Knight ROB, Kilham SS, Russell JA (2012) Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol Ecol 21:3363–3378

    Article  PubMed  Google Scholar 

  17. Sullam KE, Rubin BER, Dalton CM, Kilham SS, Flecker AS, Russell JA (2015) Divergence across diet, time and populations rules out parallel evolution in the gut microbiomes of Trinidadian guppies. ISME J 9:1508–1522

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wong SD, Rawls JF (2012) Intestinal microbiota composition in fishes is influenced by host ecology and environment. Mol Ecol 21:3100–3102

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yan QY, Van der Gast CJ, Yu YH (2012) Bacterial community assembly and turnover within the intestines of developing zebrafish. PLoS One 7:e30603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bakke I, Skjermo J, Vo TA, Vadstein O (2013) Live feed is not a major determinant of the microbiota associated with cod larvae (Gadus morhua). Environ Microbiol Rep 5:537–548

    Article  PubMed  Google Scholar 

  21. Fishery Bureau of the Ministry of Agriculture (2014) China fishery statistical yearbook. China Agriculture Press, Beijing

    Google Scholar 

  22. Gui JF, Liang SC (1999) Allogynogenetic silver crucian carp. In: Wu CJ, Gui JF (eds) Fish genetics and breeding engineering. Shanghai Scientific & Technical Publishers, Shanghai

    Google Scholar 

  23. Ye L, Amberg J, Chapman D, Gaikowski M, Liu WT (2014) Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. ISME J 8:541–551

    Article  CAS  PubMed  Google Scholar 

  24. Li TT, Long M, Gatesoupe FJ, Zhang QQ, Li AH, Gong XN (2015) Comparative analysis of the intestinal bacterial communities in different species of carp by pyrosequencing. Microb Ecol 69:25–36

    Article  CAS  PubMed  Google Scholar 

  25. Yan Q, Bi Y, Deng Y, He ZL, Wu LY, Van Nostrand JD, Shi Z, Li JJ, Wang X, Hu ZY, Yu YH, Zhou JH (2015) Impacts of the Three Gorges Dam on microbial structure and potential function. Sci Rep-Uk 5

  26. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gilbert JA, Jansson JK, Knight R (2014) The Earth Microbiome project: successes and aspirations. BMC Biol 12:69

    Article  PubMed  PubMed Central  Google Scholar 

  28. Apprill A, McNally S, Parsons R, Weber L (2015) Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol 75:129–137

    Article  Google Scholar 

  29. Wu LY, Wen CQ, Qin YJ, Yin HQ, Tu QC, Van Nostrand JD, Yuan T, Yuan MT, Deng Y, Zhou JZ (2015) Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiol 15

  30. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996

    Article  CAS  PubMed  Google Scholar 

  31. Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci U S A 109:21390–21395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267

    Article  CAS  PubMed  Google Scholar 

  33. Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    Article  CAS  PubMed  Google Scholar 

  35. Kembel SW (2009) Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecol Lett 12:949–960

    Article  PubMed  Google Scholar 

  36. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Article  Google Scholar 

  37. Development Core Team R (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  38. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. Plos One 8

  39. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  40. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens HH, Wanger H (2016) vegan: Community Ecology Package

  41. Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New York

    Book  Google Scholar 

  42. Welch BL (1947) The generalization of ‘Student’s’ problem when several different population variances are involved. Biometrika 34:28–35

    CAS  PubMed  Google Scholar 

  43. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  44. O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693

    Article  PubMed  PubMed Central  Google Scholar 

  45. Backhed F, Manchester JK, Semenkovich CF, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104:979–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RL, Rosenbaum M, Gordon JI (2013) The long-term stability of the human gut microbiota. Science 341:44

    Article  CAS  Google Scholar 

  47. Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, Stombaugh J, Knights D, Gajer P, Ravel J, Fierer N, Gordon JI, Knight R (2011) Moving pictures of the human microbiome. Genome Biol 12:R50

    Article  PubMed  PubMed Central  Google Scholar 

  48. Benson AK, Kelly SA, Legge R, Ma FR, Low SJ, Kim J, Zhang M, Oh PL, Nehrenberg D, Hua KJ, Kachman SD, Moriyama EN, Walter J, Peterson DA, Pomp D (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A 107:18933–18938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu SG, Tian JY, Gatesoupe FJ, Li WX, Zou H, Yang BJ, Wang GT (2013) Intestinal microbiota of gibel carp (Carassius auratus gibelio) and its origin as revealed by 454 pyrosequencing. World J Microbiol Biotechnol 29:1585–1595

    Article  PubMed  Google Scholar 

  50. Li J, Ni J, Li J, Wang C, Li X, Wu S, Zhang T, Yu Y, Yan Q (2014) Comparative study on gastrointestinal microbiota of eight fish species with different feeding habits. J Appl Microbiol 117:1750–1760

    Article  CAS  PubMed  Google Scholar 

  51. Ni JJ, Yan QY, Yu YH, Zhang TL (2014) Factors influencing the grass carp gut microbiome and its effect on metabolism. FEMS Microbiol Ecol 87:704–714

    Article  CAS  PubMed  Google Scholar 

  52. Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, Bohannan BJM (2016) Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J 10:655–664

    Article  CAS  PubMed  Google Scholar 

  53. Li Q (2007) The study on intestinal histology and developing regulation of nutrients of allogynogenetic Crucian. Nanjing Agricultural University

  54. Nayak SK (2010) Role of gastrointestinal microbiota in fish. Aquac Res 41:1553–1573

    Article  Google Scholar 

  55. Li XM, Yan QY, Xie SQ, Hu W, Yu YH, Hu ZH (2013) Gut microbiota contributes to the growth of fast-growing transgenic common carp (Cyprinus carpio L.). Plos One 8

  56. DeLong EF (2014) Alien invasions and gut “island biogeography”. Cell 159:233–235

    Article  CAS  PubMed  Google Scholar 

  57. De Schryver P, Vadstein O (2014) Ecological theory as a foundation to control pathogenic invasion in aquaculture. ISME J 8:2360–2368

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Ellie Lin for help with English. This work was supported by the National Natural Science Foundation of China (Nos. 31400109, 31372202, and 31500417) and the Guangdong Natural Science Foundation (No. 2014A030310281).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyun Yan.

Electronic supplementary material

Fig. S1

(DOCX 739 kb)

Fig. S2

(DOCX 562 kb)

Fig. S3

(DOCX 321 kb)

Fig. S4

(DOCX 360 kb)

Fig. S5

(DOCX 2054 kb)

Fig. S6

(DOCX 980 kb)

Fig. S7

(DOCX 987 kb)

Table S1

(DOCX 21 kb)

Table S2

(DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhou, L., Yu, Y. et al. Composition of Gut Microbiota in the Gibel Carp (Carassius auratus gibelio) Varies with Host Development. Microb Ecol 74, 239–249 (2017). https://doi.org/10.1007/s00248-016-0924-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0924-4

Keywords

Navigation