Skip to main content
Log in

A New Deep-Sea Suctorian-Nematode Epibiosis (Loricophrya-Tricoma) from the Blanes Submarine Canyon (NW Mediterranean)

  • Note
  • Published:
Microbial Ecology Aims and scope Submit manuscript

An Erratum to this article was published on 06 June 2017

Abstract

During a pluri-disciplinary study carried out within the frame of the Spanish research project DOS MARES, multicore samples were collected along the Blanes submarine canyon and its adjacent open slope to study the structure and dynamics of the meiofaunal organisms, mainly nematodes. Among the 5808 nematode individuals identified, only 190 of them belonged to the genus Tricoma (Desmoscolecidae), and only two harboured epibiont suctorian ciliates. The three specimens were located near the tail of the basibionts. A careful examination of the ciliates revealed that they were suctorians, which are here described as a new species of Loricophrya, namely L. mediterranea sp. nov. The new species is characterized by having a conical, slightly elongated lorica, narrowing towards posterior end; an anterior end inward curved, surrounding the lorica opening; a body placed near the lorica opening, occupying 1/3 of the lorica length, 4–8 capitate tentacles, and a peripheral, oval to sausage-shaped macronucleus. Our findings represent the first known report of an association with a deep-sea species of Tricoma, and the first record in the Mediterranean Sea, for a species of Loricophrya. The significance of the relationships between suctorian ciliates and their host in extreme environments such as deep-sea submarine canyons is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6

References

  1. Álvarez-Campos P, Fernández-Leborans G, Verdes A, San Martín G, Martin D, Riesgo A (2014) The tag-along friendship: epibiotic protozoans and syllid polychaetes. Implications for the taxonomy of Syllidae (Annelida), and description of three new species of Rhabdostyla and Cothurnia (Ciliophora, Peritrichia). Zool. J. Linnean Soc. 172(2):265–281

    Article  Google Scholar 

  2. Amblas D, Canals M, Urgeles R, Lastras G, Liquete C, Hughes-Clarke JE, Casamor JL, Calafat AM (2006) Morphogenetic mesoscale analysis of the northeastern Iberian margin, NW Mediterranean Basin. Mar. Geol. 234(1):3–20

    Article  Google Scholar 

  3. Ansari KGMT, Bhadury P (2016) Occurrence of epibionts associated with meiofaunal basibionts from the world’s largest mangrove ecosystem, Sundarbans. Marine Biodiversity. doi:10.1007/s12526-016-0502-5

  4. Baban I, Singh R, Sautya S, Dovgal I, Chatterjee T (2009) Report of epibiont Thecacineta calix (Ciliophora: Suctorea) on deep sea Desmodora (Nematoda) from the Andaman Sea, Indian Ocean. JMBA2 - Biodiversity Records. doi:10.1017/S1755267209990777

  5. Bhattacharjee D (2014) Suctorian epibionts on Chromaspirina sp. (Nematoda: Desmodoridae) from the shallow continental shelf of the Bay of Bengal, northern Indian Ocean. Marine Biodiversity Records 7:1

    Article  Google Scholar 

  6. Blome D, Riemann F (1987) A sediment agglutination on females of the free-living marine nematode Desmodora schulzi. Helgoländer Meeresuntersuchungen 41:113–119

    Article  Google Scholar 

  7. Curds CR (1987) A revision of the Suctoria (Ciliophora, Kinetofragminophora). 5. The Paracineta and Corynophrya problem. Bull British Mus (Nat Hist) (Zool) 52:71–106

    Google Scholar 

  8. De Grisse AT (1969) Redescription ou modifications de quelques techniques utilisées dans l’étude des nematodes phytoparasitaires. Mededelingen Rijksfakulteit Landbouwwetenschappen, Gent 34:351–369

    Google Scholar 

  9. Dovgal IV (2002) Evolution, phylogeny and classification of Suctorea (Ciliophora). Protistology 2:194–270

  10. Dovgal IV, Chatterjee T, Baban І (2008a) An overview of suctorian ciliates (Ciliophora, Suctorea) as epibionts of halacarid mites (Acari, Halacaridae). Zootaxa 1810:60–68

  11. Dovgal IV, Chatterjee T, Ingole B, Nanajкar M (2008b) First report of Limnoricus ponticus Dovgal & Lozowskiy (Ciliophora: Suctorea) as epibionts on Pycnophyes (Kinorhyncha) from the Indian Ocean with key to species of the genus Limnoricus. Cah. Biol. Mar. 49:381–385

    Google Scholar 

  12. Dovgal I, Chatterjee T, Ingole B (2009a) New records of Thecacineta cothurnioides and Trematosoma rotunda (Ciliophora, Suctorea) as epibionts on nematodes from the Indian Ocean. Protistology 6:19–23

    Google Scholar 

  13. Dovgal I, Chatterjee T, Rao DS, Chan BK, De Troch M (2009b) New records of Praethecacineta halacari (Schulz) (Suctorea: Ciliophora) from Taiwan, Tanzania and Canada. Marine Biodiversity Records 2:e136

    Article  Google Scholar 

  14. Fenchel T (1987) Ecology of protozoa. The biology of free-living phagotrophic protists. Springer-Verlag, Berlin, Madison, Wisconsin, p. 52 [Brock/Springer Series in Contemporary Bioscience. Science Technical Publishers.]

    Google Scholar 

  15. Fernandez-Leborans G, Tato-Porto ML (2000a) A review of the species of protozoan epibionts on crustaceans. I. Peritrich ciliates. Crustaceana 73:643–684

  16. Fernandez-Leborans G, Tato-Porto ML (2000b) A review of the species of protozoan epibionts on crustaceans. II. Suctorian ciliates. Crustaceana 73:1205–1237

  17. Fernandez-Leborans G, Gabilondo R (2005) Hydrozoan and protozoan epibionts on two de capod species, Liocarcinus depurator (Linnaeus, 1758) and Pilumnus hirtellus (Linnaeus, 1761), from Scotland. Zool Anz 244:59–72

  18. Fernandez-Leborans G (2010) Epibiosis in Crustacea: an overview. Crustaceana 83(5):549

    Article  Google Scholar 

  19. Fernandez-Leborans G, Von Rintelen K (2010) Biodiversity and distribution of epibiontic communities on Caridina ensifera (Crustacea, Decapoda, Atyidae) from Lake Poso: comparison with another ancient lake system of Sulawesi (Indonesia). Acta Zool. 91(2):163–175

    Article  Google Scholar 

  20. Fisher R (2003) Ciliate hitchhikers—nematode ecto-commensals from tropical Australian sea grass meadows. J. Mar. Biol. Assoc. U. K. 83:445–446

    Article  Google Scholar 

  21. Gili J-M, Bouillon J, Pagès F, Palanques A, Puig P, Heussner S (1998) Origin and biogeography of deep water Mediterranean Hydromedusae including the description of two new species collected in submarine canyons of Northwestern Mediterranean. Sci. Mar. 62(1–2):113–134

    Google Scholar 

  22. Gili J-M, Bouillon J, Pagès F, Palanques A, Puig P (1999) Submarine canyons as habitat of singular plankton populations: three new deep-sea hydromedusae in the western Mediterranean. Zool. J. Linnean Soc. 125:313–329

    Article  Google Scholar 

  23. Gili JM, Puig P, Pagès F, Palanques A, Boullion J, Heussner S (2000) Deep-water Hydromedusae from the Lacaze-Duthiers submarine canyon (Banyuls, north-western Mediterranean) and description of two new genera (Guillea and Parateclaia). Sci. Mar. 64(1):87–95

    Article  Google Scholar 

  24. Ingole B, Singh R, Sautya S, Dovgal I, Chatterjee T (2009) Report of epibiont Thecacineta calix (Ciliophora: Suctorea) on deep-sea Desmodora (Nematoda) from the Andaman Sea, Indian Ocean. Marine Biodiversity Records 3:e46

    Article  Google Scholar 

  25. Key Jr MM, Winston JE, Volpe JW, Jeffries WB, Voris HK (1999) Bryozoan fouling of the blue crab Callinectes sapidus at Beaufort, North Carolina. Bull. Mar. Sci. 64(3):513–533

    Google Scholar 

  26. Lastras G, Canals M, Amblas D, Lavoie C, Church I, De Mol B, Duran R, Calafat AM, Huhes-Clarke JE, Smith CJ, Heussner S (2011) Understanding sediment dynamics of two large submarine valleys from seafloor data: Blanes and La Fonera canyons, northwestern Mediterranean Sea. Mar. Geol. 280(1):20–39

    Article  Google Scholar 

  27. Liao J-X, Dovgal I (2015) A new Thecacineta species (Ciliophora, Suctorea) on Desmodora pontica (Nematoda, Desmodorida) from a seagrass bed in Taiwan. Protistology 9:75–78

  28. Morado JF, Small EB (1995) Ciliate parasites and related diseases of Crustacea, a review. Rev Fisheries Sci 3:275–354

  29. Muthumbi A, Verschelde D, Vincx M (1995) New Desmodoridae (Nematoda: Desmodoroidea): three new species from Ceriops mangrove sediments (Kenya) and one related new species from the North Sea. Cah. Biol. Mar. 36:181–195

    Google Scholar 

  30. Nicholas WL, Stewart AC, Marples TG (1988) Field and laboratory studies of Desmodora cazca Gerlach, 1956 (Desmodoridae: Nematoda) from mangrove mud-fats. Nematologica 34:331–349

    Article  Google Scholar 

  31. Platt, H. M. & Warwick, R. M. (1988) Free-living marine nematodes. Part II: British chromadorids. Brill/Backhuys, for the Linnean Society of London and the Estuarine and Brackish-Water Sciences Association.

  32. Román, S., Vanreusel, A., Romano, C., Ingels, J., Puig, P., Company, J.B., Martin, D., submitted. High spatiotemporal variability in meiofauna assemblages in Blanes Canyon (NW Mediterranean) subject to anthropogenic and natural disturbances. Deep-Sea Res. I.

  33. Romano C, Coenjaerts J, Fleixas MM, Zúñiga D, Vanreusel A, Company JB, Martin D (2013a) Spatio-temporal variability of meiobenthic density in the Blanes submarine canyon (NW Mediterranean). Prog. Oceanogr. 118:159–174

    Article  Google Scholar 

  34. Romano C, Voight JR, Company JB, Plyuscheva M, Martin D (2013b) Submarine canyons as preferred habitat for wood-boring species of Xylophaga (Mollusca, Bivalvia). Prog. Oceanogr. 118:175–187

    Article  Google Scholar 

  35. Sardà F, Company JB, Bahamón N, Rotllant G, Flexas MM, Sánchez JD, Zúñiga D, Coenjaerts J, Orellana D, Jordà G, Puigdefábregas J, Sánchez-Vidal A, Calafat A, Martín D, Espino M (2009) Relationship between environment and the occurrence of the deep-water rose shrimp Aristeus antennatus (Risso, 1816) in the Blanes submarine canyon (NW Mediterranean). Prog. Oceanogr. 82:227–238

    Article  Google Scholar 

  36. Sardá R, Gil J, Taboada S, Gili JM (2009) Polychaete species captured in sediment traps moored in northwestern Mediterranean submarine canyons. Zool. J. Linnean Soc. 155:1–21

    Article  Google Scholar 

  37. Sevastou K, Corgosinho PHC, Arbizu PM (2012) A new species of Dahmsopottekina (Copepoda: Harpacticoida: Huntemanniidae) from the western Mediterranean deep sea. Journal of the Marine Biological Association of U.K. 92:1043–1055

    Article  Google Scholar 

  38. Sergeeva N, Dovgal I (2016) Loricophrya bosporica n. sp. (Ciliophora, Suctorea) epibiont of Desmoscolex minutus (Nematoda, Desmoscolecida) from oxic/anoxic boundary of the Black Sea Istanbul Strait’s outlet area. Zootaxa 4061(5):596–600

    Article  PubMed  Google Scholar 

  39. Tazioli S, Di Camillo CG (2013) Ecological and morphological characteristics of Ephelota gemmipara (Ciliophora, Suctoria), epibiontic on Eudendrium racemosum (Cnidaria, Hydrozoa) from the Adriatic Sea. Eur. J. Protistol. 49(4):590–599

    Article  PubMed  Google Scholar 

  40. Tecchio S, Ramírez-Llodra E, Aguzzi J, Sanchez-Vidal A, Flexas MM, Sardà F, Company JB (2013) Seasonal fluctuations of deep megabenthos: finding evidence of standing stock accumulation in a flux-rich continental slope. Prog. Oceanogr. 118:188–198

    Article  Google Scholar 

  41. Wahl M (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar Ecol Progr Ser 58:175–189

  42. Wahl M (2008) Ecological lever and interface ecology: epibiosis modulates the interactions between host and environment. Biofouling 24(6):427–438

    Article  PubMed  Google Scholar 

  43. Wahl M, Goecke FR, Labes A, Dobretsov S, Weinberger F (2012) The second skin: ecological role of epibiotic biofilms on marine organisms. Front. Microbiol. 3:292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Weissman P, Lonsdale DJ, Yen J (1993) The effect of peritrich ciliates on the production of Acartia hudsonica in Long Island Sound. Limnol. Oceanogr. 38(3):613–622

    Article  Google Scholar 

Download references

Acknowledgements

This paper is a contribution of SR and DM to the Research Projects CTM2010-21810-C03-03 and CTM2013-43287-P, funded by the Spanish National Scientific and Technical Research and Innovation Plan of the Ministry of Economy of Spain, and to the Consolidated Research Group on Marine Benthic Ecology of the Generalitat de Catalunya (2014SGR120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregorio Fernandez-Leborans.

Ethics declarations

Ethical Statements

• The manuscript has not been submitted to more than one journal for simultaneous consideration.

• The manuscript has not been published previously (partly or in full), unless the new work concerns an expansion of previous work (please provide transparency on the re-use of material to avoid the hint of text-recycling (“self-plagiarism”)).

• A single study is not split up into several parts to increase the quantity of submissions and submitted to various journals or to one journal over time (e.g. “salami-publishing”).

• No data have been fabricated or manipulated (including images) to support your conclusions.

• No data, text or theories by others are presented as if they were the author’s own (“plagiarism”). Proper acknowledgements to other works must be given (this includes material that is closely copied (near verbatim), summarized and/or paraphrased), quotation marks are used for verbatim copying of material and permissions are secured for material that is copyrighted.

• Consent to submit has been received explicitly from all co-authors, as well as from the responsible authorities—tacitly or explicitly—at the institute/organization where the work has been carried out, before the work is submitted.

• Authors whose names appear on the submission have contributed sufficiently to the scientific work and therefore share collective responsibility and accountability for the results.

“All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards”.

“All applicable international, national, and/or institutional guidelines for the care and use of animals were followed”.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00248-017-1005-z.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez-Leborans, G., Román, S. & Martin, D. A New Deep-Sea Suctorian-Nematode Epibiosis (Loricophrya-Tricoma) from the Blanes Submarine Canyon (NW Mediterranean). Microb Ecol 74, 15–21 (2017). https://doi.org/10.1007/s00248-016-0923-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0923-5

Keywords

Navigation