Skip to main content
Log in

Ericoid Roots and Mycospheres Govern Plant-Specific Bacterial Communities in Boreal Forest Humus

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In this study, the bacterial populations of roots and mycospheres of the boreal pine forest ericoid plants, heather (Calluna vulgaris), bilberry (Vaccinium myrtillus), and lingonberry (Vaccinium vitis-idaea), were studied by qPCR and next-generation sequencing (NGS). All bacterial communities of mycosphere soils differed from soils uncolonized by mycorrhizal mycelia. Colonization by mycorrhizal hyphae increased the total number of bacterial 16S ribosomal DNA (rDNA) gene copies in the humus but decreased the number of different bacterial operational taxonomic units (OTUs). Nevertheless, ericoid roots and mycospheres supported numerous OTUs not present in uncolonized humus. Bacterial communities in bilberry mycospheres were surprisingly similar to those in pine mycospheres but not to bacterial communities in heather and lingonberry mycospheres. In contrast, bacterial communities of ericoid roots were more similar to each other than to those of pine roots. In all sample types, the relative abundances of bacterial sequences belonging to Alphaproteobacteria and Acidobacteria were higher than the sequences belonging to other classes. Soil samples contained more Actinobacteria, Deltaproteobacteria, Opitutae, and Planctomycetia, whereas Armatimonadia, Betaproteobacteria, Gammaproteobacteria, and Sphingobacteriia were more common to roots. All mycosphere soils and roots harbored bacteria unique to that particular habitat. Our study suggests that the habitation by ericoid plants increases the overall bacterial diversity of boreal forest soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Canadian Journal of Botany-Revue Canadienne De Botanique 82:1243–1263. doi:10.1139/B04-123

    CAS  Google Scholar 

  2. Abuzinadah RA, Read DJ (1989) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. V. Nitrogen transfer in birch (Betula pendula) grown in association with mycorrhizal and non-mycorrhizal fungi. New Phytol. 112:61–68

    Article  CAS  Google Scholar 

  3. Bending GD, Read DJ (1996) Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi. Soil Biol. Biochem. 28:1603–1612

    Article  CAS  Google Scholar 

  4. Persson J, Hogberg P, Ekblad A, Hogberg MN, Nordgren A, Nasholm T (2003) Nitrogen acquisition from inorganic and organic sources by boreal forest plants in the field. Oecologia 137:252–257. doi:10.1007/s00442-003-1334-0

    Article  PubMed  Google Scholar 

  5. Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canback B, Choi C, Cichocki N, Clum A, Colpaert J, Copeland A, Costa MD, Dore J, Floudas D, Gay G, Girlanda M, Henrissat B, Herrmann S, Hess J, Hogberg N, Johansson T, Khouja HR, LaButti K, Lahrmann U, Levasseur A, Lindquist EA, Lipzen A, Marmeisse R, Martino E, Murat C, Ngan CY, Nehls U, Plett JM, Pringle A, Ohm RA, Perotto S, Peter M, Riley R, Rineau F, Ruytinx J, Salamov A, Shah F, Sun H, Tarkka M, Tritt A, Veneault-Fourrey C, Zuccaro A, Tunlid A, Grigoriev IV, Hibbett DS, Martin F, Co MGI (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 47

  6. van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11:296–310. doi:10.1111/j.1461-0248.2007.01139.x

    Article  PubMed  Google Scholar 

  7. Timonen S, Bomberg M (2009) Archaea in dry soil environments. Phytochem. Rev. 8:505–518. doi:10.1007/s11101-009-9137-5

    Article  CAS  Google Scholar 

  8. Merbach W, Mirus E, Knof G, Remus R, Ruppel S, Russow R, Gransee A, Schulze J (1999) Release of carbon and nitrogen compounds by plant roots and their possible ecological importance. J Plant Nutr Soil Sc 162:373–383. doi:10.1002/(Sici)1522-2624(199908)

    Article  CAS  Google Scholar 

  9. Pumpanen JS, Heinonsalo J, Rasilo T, Hurme KR, Ilvesniemi H (2009) Carbon balance and allocation of assimilated CO2 in Scots pine, Norway spruce, and Silver birch seedlings determined with gas exchange measurements and C-14 pulse labelling. Trees-Struct Funct 23:611–621. doi:10.1007/s00468-008-0306-8

    Article  CAS  Google Scholar 

  10. Högberg P, Nordgren A, Buchmann N, Taylor A, Ekblad A, Högberg M, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  PubMed  Google Scholar 

  11. Skyring GW, Quadling C (1969) Soil bacteria—comparisons of rhizosphere and nonrhizosphere populations. Can. J. Microbiol. 15:473–488

    Article  CAS  PubMed  Google Scholar 

  12. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London

  13. Timonen S, Hurek T (2006) Characterization of culturable bacterial populations associating with Pinus sylvestris-Suillus bovinus mycorrhizospheres. Can. J. Microbiol. 52:769–778

    Article  CAS  PubMed  Google Scholar 

  14. Timonen S, Jørgensen KS, Haahtela K, Sen R (1998) Bacterial community structure at defined locations of Pinus sylvestris -Suillus bovinus and -Paxillus involutus mycorrhizospheres in dry pine forest humus and nursery peat. Can. J. Microbiol. 44:499–513

    Article  CAS  Google Scholar 

  15. Fransson P, Rosling A (2014) Fungal and bacterial community responses to Suillus variegtus extraradical mycelia and soil profile in Scots pine microcosms. Plant Soil 385:255–272. doi:10.1007/s11104-014-2231-5

    Article  CAS  Google Scholar 

  16. Izumi H, Finlay RD (2011) Ectomycorrhizal roots select distinctive bacterial and ascomycete communities in Swedish subarctic forests. Environ. Microbiol. 13:819–830. doi:10.1111/j.1462-2920.2010.02393.x

    Article  PubMed  Google Scholar 

  17. Izumi H, Elfstrand M, Fransson P (2013) Suillus mycelia under elevated atmospheric CO2 support increased bacterial communities and scarce nifH gene activity in contrast to Hebeloma mycelia. Mycorrhiza 23:155–165. doi:10.1007/s00572-012-0460-0

    Article  CAS  PubMed  Google Scholar 

  18. Torsvik V, Ovreås L, Thingstad T (2002) Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science 296:1064–1066

    Article  CAS  PubMed  Google Scholar 

  19. Karlsson AE, Johansson T, Bengtson P (2012) Archaeal abundance in relation to root and fungal exudation rates. FEMS Microbiol. Ecol. 80:305–311. doi:10.1111/j.1574-6941.2012.01298.x

    Article  CAS  PubMed  Google Scholar 

  20. Raynaud X, Nunan N (2014) Spatial ecology of bacteria at the microscale in soil. PLoS One 9:e87217. doi:10.1371/journal.pone.0087217

    Article  PubMed  PubMed Central  Google Scholar 

  21. Smets WLJ, Bradford MA, McCulley RL, Lebeer S, Fierer N (2015) A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing. Peer J PrePrints doi. doi:10.7287/peerj.preprints

    Google Scholar 

  22. Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1:283–290. doi:10.1038/ismej.2007.53

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl. Acad. Sci. U. S. A. 109:21390–21395. doi:10.1073/pnas.1215210110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Uroz S, Oger P, Morin E, Frey-Klett P (2012) Distinct Ectomycorrhizospheres share similar bacterial communities as revealed by pyrosequencing-based analysis of 16S rRNA genes. Appl. Environ. Microbiol. 78:3020–3024. doi:10.1128/Aem.06742-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lopez-Mondejar R, Voriskova J, Vetrovsky T, Baldrian P (2015) The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics. Soil Biol. Biochem. 87:43–50. doi:10.1016/j.soilbio.2015.04.008

    Article  CAS  Google Scholar 

  26. Baldrian P, Kolarik M, Stursova M, Kopecky J, Valaskova V, Vetrovsky T, Zifcakova L, Snajdr J, Ridl J, Vlcek C, Voriskova J (2012) Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 6:248–258. doi:10.1038/ismej.2011.95

    Article  CAS  PubMed  Google Scholar 

  27. Robertson SJ, Rutherford PM, Massicotte HB (2011) Plant and soil properties determine microbial community structure of shared Pinus-Vaccinium rhizospheres in petroleum hydrocarbon contaminated forest soils. Plant Soil 346:121–132. doi:10.1007/s11104-011-0802-2

    Article  CAS  Google Scholar 

  28. Brown MT, Wilkins DA (1985) Zinc tolerance of mycorrhizal Betula. New Phytol. 99:101–106

    Article  CAS  Google Scholar 

  29. Adamczyk B, Ahvenainen A, Sietiö O-M, Kanerva S, Kieloaho A-J, Smolander A, Kitunen V, Saranpää P, Laakso T, Strakov P, Heinonsalo J (2016) The contribution of ericoid plants to soil nitrogen chemistry and organic matter decomposition in boreal forest soil. Soil Biol. Biochem. 103:394–404. doi:10.1016/j.soilbio.2016.09.016

    Article  CAS  Google Scholar 

  30. Murray MG, Thompson WF (1980) Rapid isolation of high molecular-weight plant DNA. Nucleic Acids Res. 8:4321–4325. doi:10.1093/nar/8.19.4321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Salavirta H, Oksanen I, Kuuskeri J, Makela M, Laine P, Paulin L, Lundell T (2014) Mitochondrial genome of Phlebia radiata is the second largest (156 kbp) among fungi and features signs of genome flexibility and recent recombination events. PLoS One 9:e97141. doi:10.1371/journal.pone.0097141

    Article  PubMed  PubMed Central  Google Scholar 

  32. Brody JR, Kern SE (2004) Sodium boric acid: a Tris-free, cooler conductive medium for DNA electrophoresis. BioTechniques 36:214–216

    CAS  PubMed  Google Scholar 

  33. Chung J, Ha ES, Park HR, Kim S (2004) Isolation and characterization of lactobacillus species inhibiting the formation of Streptococcus mutans biofilm. Oral Microbiol Immun 19:214–216. doi:10.1111/j.0902-0055.2004.00137.x

    Article  CAS  Google Scholar 

  34. Edwards U, Rogall T, Blocker H, Emde M, Bottger EC (1989) Isolation and direct complete nucleotide determination of entire genes—characterization of a gene coding for 16 s-ribosomal Rna. Nucleic Acids Res. 17:7843–7853. doi:10.1093/nar/17.19.7843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnetjournal 17:10–12

    Google Scholar 

  36. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:7537–7541. doi:10.1128/Aem.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79:5112–5120. doi:10.1128/Aem.01043-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi:10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glockner FO (2014) The SILVA and "All-species Living Tree Project (LTP)" taxonomic frameworks. Nucleic Acids Res. 42:D643–D648. doi:10.1093/nar/gkt1209

    Article  CAS  PubMed  Google Scholar 

  40. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41:D590–D596. doi:10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  41. Cole JR, Wang Q, Fish JA, Chai BL, McGarrell DM, Sun YN, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42:D633–D642. doi:10.1093/nar/gkt1244

    Article  CAS  PubMed  Google Scholar 

  42. Team RDC (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria URL https://www.r-project.org.

  43. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi:10.1111/j.1442-9993.2001.01070.pp.x

    Google Scholar 

  44. McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297. doi:10.1890/0012-9658(2001)082 Co;2

    Article  Google Scholar 

  45. Oksanen J, Blanchet F, Kindt R, Legendre P, Minchin P, O’Hara R, Simpson G, Solymos P, Stevens M, Wagner H (2016) Vegan: Community Ecology Package. http://CRAN.R-project.org/package=vegan R package version 2.3–3. Accessed 04.04.2016

  46. Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69:512–512. doi:10.1890/0012-9615(1999)069 CO;2

    Article  Google Scholar 

  47. Anderson MJ, Robinson J (2003) Generalized discriminant analysis based on distances. Aust Nz J. Stat 45:301–318. doi:10.1111/1467-842x.00285

    Google Scholar 

  48. Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525. doi:10.1890/0012-9658(2003)084. Co;2

    Article  Google Scholar 

  49. Kindt R, Coe R (2005) Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi

  50. Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253. doi:10.1111/j.1541-0420.2005.00440.x

    Article  PubMed  Google Scholar 

  51. Gastwirth JL, Gel YR, Hui WLW, Lyubchich V, Miao W, Noguchi K (2015) Lawstat: Tools for Biostatistics, Public Policy, and Law. R package version 3.0. http://CRAN.R-project.org/package=lawstat.

  52. Warmink JA, van Elsas JD (2008) Selection of bacterial populations in the mycosphere of Laccaria proxima: is type III secretion involved? ISME J. 2:887–900. doi:10.1038/ismej.2008.41

    Article  CAS  PubMed  Google Scholar 

  53. Olsson PA, Wallander H (1998) Interactions between ectomycorrhizal fungi and the bacterial community in soils amended with various primary minerals. FEMS Microbiol. Ecol. 27:195–205

    Article  CAS  Google Scholar 

  54. Van Aarle IM, Söderström B, Olsson PA (2003) Growth and interactions of arbuscular mycorrhizal fungi in soils from limestone and acid rock habitats. Soil Biol. Biochem. 35:1557–1564

    Article  CAS  Google Scholar 

  55. Olsson PA, Chalet M, Baath E, Finlay RD, Soderstrom B (1996) Ectomycorrhizal mycelia reduce bacterial activity in a sandy soil. FEMS Microbiol. Ecol. 21:77–86

    Article  CAS  Google Scholar 

  56. Kurth F, Zeitler K, Feldhahn L, Neu TR, Weber T, Kristufek V, Wubet T, Herrmann S, Buscot F, Tarkka MT (2013) Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity. BMC Microbiol. 13:205. doi:10.1186/1471-2180-13-205

    Article  PubMed  PubMed Central  Google Scholar 

  57. Reinhold-Hurek B, Bunger W, Burbano CS, Sabale M, Hurek T (2015) Roots shaping their microbiome: global hotspots for microbial activity. Annu. Rev. Phytopathol. 53:403–424. doi:10.1146/annurev-phyto-082712-102342

    Article  CAS  PubMed  Google Scholar 

  58. Vetrovsky T, Baldrian P (2013) The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One 8:e57923. doi:10.1371/journal.pone.0057923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Uroz S, Buee M, Murat C, Frey-Klett P, Martin F (2010) Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Env Microbiol Rep 2:281–288. doi:10.1111/j.1758-2229.2009.00117.x

    Article  CAS  Google Scholar 

  60. Vik U, Logares R, Blaalid R, Halvorsen R, Carlsen T, Bakke I, Kolsto AB, Okstad OA, Kauserud H (2013) Different bacterial communities in ectomycorrhizae and surrounding soil. Sci Rep-Uk 3:3471. doi:10.1038/Srep03471

    Google Scholar 

  61. Kielak A, Pijl AS, van Veen JA, Kowalchuk GA (2008) Differences in vegetation composition and plant species identity lead to only minor changes in soil-borne microbial communities in a former arable field. FEMS Microbiol. Ecol. 63:372–382. doi:10.1111/j.1574-6941.2007.00428.x

    Article  CAS  PubMed  Google Scholar 

  62. Brown SP, Jumpponen A (2014) Contrasting primary successional trajectories of fungi and bacteria in retreating glacier soils. Mol. Ecol. 23:481–497. doi:10.1111/mec.12487

    Article  PubMed  Google Scholar 

  63. Thomson BC, Ostle N, McNamara N, Bailey MJ, Whiteley AS, Griffiths RI (2010) Vegetation affects the relative abundances of dominant soil bacterial taxa and soil respiration rates in an upland grassland soil. Microb. Ecol. 59:335–343. doi:10.1007/s00248-009-9575-z

    Article  PubMed  Google Scholar 

  64. Pascual J, Blanco S, Garcia-Lopez M, Garcia-Salamanca A, Bursakov SA, Genilloud O, Bills GF, Ramos JL, van Dillewijn P (2016) Assessing bacterial diversity in the rhizosphere of thymus zygis growing in the Sierra Nevada National Park (Spain) through culture-dependent and independent approaches. PLoS One 11:e0146558. doi:10.1371/journal.pone.0146558

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 3:442–453. doi:10.1038/ismej.2008.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Franke-Whittle IH, Manici LM, Insam H, Stres B (2015) Rhizosphere bacteria and fungi associated with plant growth in soils of three replanted apple orchards. Plant Soil 395:317–333. doi:10.1007/s11104-015-2562-x

    Article  CAS  Google Scholar 

  67. Jeanbille M, Buee M, Bach C, Cebron A, Frey-Klett P, Turpault MP, Uroz S (2016) Soil parameters drive the structure, diversity and metabolic potentials of the bacterial communities across temperate beech forest soil sequences. Microb. Ecol. 71:482–493. doi:10.1007/s00248-015-0669-5

    Article  CAS  PubMed  Google Scholar 

  68. Bonito G, Reynolds H, Robeson MS, Nelson J, Hodkinson BP, Tuskan G, Schadt CW, Vilgalys R (2014) Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants. Mol. Ecol. 23:3356–3370. doi:10.1111/mec.12821

    Article  PubMed  Google Scholar 

  69. Schafer J, Jackel U, Kampfer P (2010) Development of a new PCR primer system for selective amplification of Actinobacteria. FEMS Microbiol. Lett. 311:103–112. doi:10.1111/j.1574-6968.2010.02069.x

    Article  PubMed  Google Scholar 

  70. Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 35:1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kurabachew H, Wydra K (2013) Characterization of plant growth promoting rhizobacteria and their potential as bioprotectant against tomato bacterial wilt caused by Ralstonia solanacearum. Biol. Control 67:75–83. doi:10.1016/j.biocontrol.2013.07.004

    Article  Google Scholar 

  72. Fuerst JA, Sagulenko E (2011) Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nature reviews. Microbiology 9:403–413. doi:10.1038/nrmicro2578

    CAS  PubMed  Google Scholar 

  73. Ofek-Lalzar M, Sela N, Goldman-Voronov M, Green SJ, Hadar Y, Minz D (2014) Niche and host-associated functional signatures of the root surface microbiome. Nat. Commun. 5:4950. doi:10.1038/Ncomms5950

    Article  CAS  PubMed  Google Scholar 

  74. Eilers KG, Lauber CL, Knight R, Fierer N (2010) Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol. Biochem. 42:896–903. doi:10.1016/j.soilbio.2010.02.003

    Article  CAS  Google Scholar 

  75. Boersma FGH, Warmink JA, Andreote FA, van Elsas JD (2009) Selection of Sphingomonadaceae at the base of Laccaria proxima and Russula exalbicans fruiting bodies. Appl. Environ. Microbiol. 75:1979–1989. doi:10.1128/Aem.02489-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Villarreal-Ruiz L, Anderson IC, Alexander IJ (2004) Interaction between an isolate from the Hymenoscyphus ericae aggregate and roots of Pinus and Vaccinium. New Phytol. 164:183–192. doi:10.1111/j.1469-8137.2004.01167.x

    Article  CAS  Google Scholar 

  77. Heinonsalo J, Koskiahde I, Sen R (2007) Scots pine bait seedling performance and root colonizing ectomycorrhizal fungal community dynamics before and during the 4 years after forest clear-cut logging. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 37:415–429. doi:10.1139/X06-213

    Article  Google Scholar 

  78. Bent E, Kiekel P, Brenton R, Taylor DL (2011) Root-associated ectomycorrhizal fungi shared by various boreal forest seedlings naturally regenerating after a fire in interior Alaska and correlation of different fungi with host growth responses. Appl. Environ. Microbiol. 77:3351–3359. doi:10.1128/Aem.02575-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Uroz S, Oger P, Tisserand E, Cébron A, Turpault M-P, Buée M, De Boer W, Leveau JHJ, Frey-Klett P (2016) Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities. Sci Rep-Uk 6:1–11. doi:10.1038/srep27756

    Article  Google Scholar 

  80. Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl. Environ. Microbiol. 73:3019–3027. doi:10.1128/Aem.00121-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Estrada-De los Santos P, Bustillos-Cristales R, Caballero-Mellado J (2001) Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl. Environ. Microbiol. 67:2790–2798. doi:10.1128/Aem.67.6.2790-2798.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Paulson JN, Stine OC, Bravo HC, Pop M (2013) Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 10:1200–1202. doi:10.1038/Nmeth.2658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550. doi:10.1186/S13059-014-0550-8

    Article  PubMed  PubMed Central  Google Scholar 

  84. McMurdie PJ, Holmes S (2014) Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10:e1003531. doi:10.1371/journal.pcbi.1003531

    Article  PubMed  PubMed Central  Google Scholar 

  85. Paulson JN, Talukder M, Pop M, Bravo HC (2016) MetagenomeSeq: Statistical analysis for sparse high-throughput sequencing. Bioconductor package: 1.12.0. http://cbcb.umd.edu/software/metagenomeSeq.

Download references

Acknowledgements

We gratefully acknowledge Academy of Finland (grant numbers 131819, 263858, 292699), the research funding for Jiangsu Specially Appointed Professor (project 165010015), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). Sincere thanks to Minna Santalahti for the upkeep of the plants as well as help in the sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sari Timonen.

Ethics declarations

Funding

This study was funded by Academy of Finland (grant numbers 131819, 263858, 292699), the research funding for Jiangsu Specially Appointed Professor (project 165010015), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

The nucleotide sequence data reported are available in the NCBI database under the study number SRP0928835.

Electronic supplementary material

Fig A1

(EPS 3885 kb)

Fig A2

(EPS 299 kb)

Fig A3

(EPS 419 kb)

Table A1

(DOCX 18 kb)

Table A2

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timonen, S., Sinkko, H., Sun, H. et al. Ericoid Roots and Mycospheres Govern Plant-Specific Bacterial Communities in Boreal Forest Humus. Microb Ecol 73, 939–953 (2017). https://doi.org/10.1007/s00248-016-0922-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0922-6

Keywords

Navigation