Skip to main content
Log in

Changes in Soil Fungal Community Structure with Increasing Disturbance Frequency

  • Fungal Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Although disturbance is thought to be important in many ecological processes, responses of fungal communities to soil disturbance have been little studied experimentally. We subjected a soil microcosm to physical disturbance, at a range of frequencies designed to simulate ecological disturbance events. We analyzed the fungal community structure using Illumina HiSeq sequencing of the ITS1 region. Fungal diversity was found to decline with the increasing disturbance frequencies, with no sign of the “humpback” pattern found in many studies of larger sedentary organisms. There is thus no evidence of an effect of release from competition resulting from moderate disturbance—which suggests that competition and niche overlap may not be important in limiting soil fungal diversity. Changing disturbance frequency also led to consistent differences in community composition. There were clear differences in OTU-level composition, with different disturbance treatments each having distinct fungal communities. The functional profile of fungal groups (guilds) was changed by the level of disturbance frequency. These predictable differences in community composition suggest that soil fungi can possess different niches in relation to disturbance frequency, or time since last disturbance. Fungi appear to be most abundant relative to bacteria at intermediate disturbance frequencies, on the time scale we studied here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lubchenco J, Menge BA (1978) Community development and persistence in a low rocky intertidal zone. Ecol. Monogr. 48:67–94

    Article  Google Scholar 

  2. Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    Article  CAS  PubMed  Google Scholar 

  3. Molino J-F, Sabatier D (2001) Tree diversity in tropical rain forests: a validation of the intermediate disturbance hypothesis. Science 294:1702–1704

    Article  CAS  PubMed  Google Scholar 

  4. Ikeda H (2003) Testing the intermediate disturbance hypothesis on species diversity in herbaceous plant communities along a human trampling gradient using a 4-year experiment in an old-field. Ecol. Res. 18:185–197

    Article  Google Scholar 

  5. Sousa WP (1984) The role of disturbance in natural communities. Annu. Rev. Ecol. Syst. 15:353–391

    Article  Google Scholar 

  6. Glenn-Lewin DC, van der Maarel E (1992) Patterns and processes of vegetation dynamics. Plant succession: theory and prediction.

  7. Willig MR, Moorhead DL, Cox SB, Zak JC (1996) Functional diversity of soil bacterial communities in the tabonuco forest: interaction of anthropogenic and natural disturbance. Biotropica:471–483

  8. Jones SE, Chiu C-Y, Kratz TK, J-T W, Shade A, McMahon KD (2008) Typhoons initiate predictable change in aquatic bacterial communities. Limnol. Oceanogr. 53:1319–1326

    Article  Google Scholar 

  9. Huston M (1979) A general hypothesis of species diversity. Am. Nat.:81–101

  10. Paine RT, Levin SA (1981) Intertidal landscapes: disturbance and the dynamics of pattern. Ecol. Monogr. 51:145–178

    Article  Google Scholar 

  11. Chesson PL, Warner RR (1981) Environmental variability promotes coexistence in lottery competitive systems. Am. Nat.:923–943

  12. Tilman D (1994) Competition and biodiversity in spatially structured habitats. Ecology 75:2–16

    Article  Google Scholar 

  13. Grime JP (2006) Plant strategies, vegetation processes, and ecosystem properties. Wiley & Sons

  14. Allison SD, Martiny JB (2008) Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. 105:11512–11519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Griffiths B, Ritz K, Bardgett RD, Cook R, Christensen S, Ekelund F, Sørensen SJ, Bååth E, Bloem J, De Ruiter P (2000) Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity–ecosystem function relationship. Oikos 90:279–294

    Article  Google Scholar 

  16. Shade A, Read JS, Welkie DG, Kratz TK, CH W, McMahon KD (2011) Resistance, resilience and recovery: aquatic bacterial dynamics after water column disturbance. Environ. Microbiol. 13:2752–2767

    Article  CAS  PubMed  Google Scholar 

  17. Kim M, Heo E, Kang H, Adams J (2013) Changes in soil bacterial community structure with increasing disturbance frequency. Microb. Ecol. 66:171–181

    Article  PubMed  Google Scholar 

  18. Trosvik P, Stenseth NC, Rudi K (2010) Convergent temporal dynamics of the human infant gut microbiota. The ISME journal 4:151–158

    Article  CAS  PubMed  Google Scholar 

  19. Langenheder S, Székely AJ (2011) Species sorting and neutral processes are both important during the initial assembly of bacterial communities. The ISME journal 5:1086–1094

    Article  PubMed  PubMed Central  Google Scholar 

  20. Orgiazzi A, Lumini E, Nilsson RH, Girlanda M, Vizzini A, Bonfante P, Bianciotto V (2012) Unravelling soil fungal communities from different Mediterranean land-use backgrounds. PLoS One 7:e34847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rodriguez R, White Jr J, Arnold AE, Redman R (2009) Fungal endophytes: diversity and functional roles. New Phytol. 182:314–330

    Article  CAS  PubMed  Google Scholar 

  22. Kandeler E, Tscherko D, Bruce K, Stemmer M, Hobbs PJ, Bardgett RD, Amelung W (2000) Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biol. Fertil. Soils 32:390–400

    Article  CAS  Google Scholar 

  23. Classen AT, Boyle SI, Haskins KE, Overby ST, Hart SC (2003) Community-level physiological profiles of bacteria and fungi: plate type and incubation temperature influences on contrasting soils. FEMS Microbiol. Ecol. 44:319–328

    Article  CAS  PubMed  Google Scholar 

  24. Mohamed DJ, Martiny JB (2011) Patterns of fungal diversity and composition along a salinity gradient. The ISME journal 5:379–388

    Article  PubMed  Google Scholar 

  25. Jonsson BG, Jonsell M (1999) Exploring potential biodiversity indicators in boreal forests. Biodiversity & Conservation 8:1417–1433

    Article  Google Scholar 

  26. Parmasto E (2001) Fungi as indicators of primeval and old-growth forests deserving protection. Fungal conservation, issues and solutions: 81–88.

  27. Huston MA, Huston MA (1994) Biological diversity: the coexistence of species. Cambridge University Press

  28. Tilman D (1988) Plant strategies and the dynamics and structure of plant communities. Princeton University Press

  29. Poulin R, Luque J, Guilhaumon F, Mouillot D (2008) Species abundance distributions and numerical dominance in gastrointestinal helminth communities of fish hosts. J. Helminthol. 82:193–202

    Article  CAS  PubMed  Google Scholar 

  30. Adler PB, HilleRisLambers J, Levine JM (2007) A niche for neutrality. Ecol. Lett. 10:95–104

    Article  PubMed  Google Scholar 

  31. Gravel D, Canham CD, Beaudet M, Messier C (2006) Reconciling niche and neutrality: the continuum hypothesis. Ecol. Lett. 9:399–409

    Article  PubMed  Google Scholar 

  32. Leibold MA, McPeek MA (2006) Coexistence of the niche and neutral perspectives in community ecology. Ecology 87:1399–1410

    Article  PubMed  Google Scholar 

  33. Ofiţeru ID, Lunn M, Curtis TP, Wells GF, Criddle CS, Francis CA, Sloan WT (2010) Combined niche and neutral effects in a microbial wastewater treatment community. Proc. Natl. Acad. Sci. 107:15345–15350

    Article  PubMed  PubMed Central  Google Scholar 

  34. Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc. Natl. Acad. Sci. 99:10494–10499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    Article  CAS  PubMed  Google Scholar 

  36. Torsvik V, Øvreås L, Thingstad TF (2002) Prokaryotic diversity--magnitude, dynamics, and controlling factors. Science 296:1064–1066

    Article  CAS  PubMed  Google Scholar 

  37. Tringe SG, Von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC (2005) Comparative metagenomics of microbial communities. Science 308:554–557

    Article  CAS  PubMed  Google Scholar 

  38. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  39. Pietikäinen J, Pettersson M, Bååth E (2005) Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol. Ecol. 52:49–58

    Article  PubMed  Google Scholar 

  40. Hutsch BW, Augustin J, Merbach W (2002) Plant rhizodeposition-an important source for carbon turnover in soils. J. Plant Nutr. Soil Sci. 165:397

    Article  CAS  Google Scholar 

  41. Bardgett R, Mawdsley J, Edwards S, Hobbs P, Rodwell J, Davies WJ (1999) Plant species and nitrogen effects on soil biological properties of temperate upland grasslands. Funct. Ecol. 13:650–660

    Article  Google Scholar 

  42. Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391

    Article  Google Scholar 

  43. Gurevitch J, Scheiner SM, Fox GA (2006) The ecology of plants. Sinauer Associates, Sunderland

    Google Scholar 

  44. Moyer CL, Dobbs FC, Karl DM (1994) Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi seamount, Hawaii. Appl. Environ. Microbiol. 60:871–879

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20:241–248

    Article  Google Scholar 

  46. Simberloff D, Dayan T (1991) The guild concept and the structure of ecological communities. Annu. Rev. Ecol. Syst. 22:115–143

    Article  Google Scholar 

  47. Buckling A, Kassen R, Bell G, Rainey PB (2000) Disturbance and diversity in experimental microcosms. Nature 408:961–964

    Article  CAS  PubMed  Google Scholar 

  48. Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Guillaumaud N, Le Roux X (2007) Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance. Environ. Microbiol. 9:2211–2219

    Article  PubMed  Google Scholar 

  49. Bååth E (1998) Growth rates of bacterial communities in soils at varying pH: a comparison of the thymidine and leucine incorporation techniques. Microb. Ecol. 36:316–327

    Article  PubMed  Google Scholar 

  50. Rousk J, Bååth E (2011) Growth of saprotrophic fungi and bacteria in soil. FEMS Microbiol. Ecol. 78:17–30

    Article  CAS  PubMed  Google Scholar 

  51. Rousk J, Bååth E (2007) Fungal biomass production and turnover in soil estimated using the acetate-in-ergosterol technique. Soil Biol. Biochem. 39:2173–2177

    Article  CAS  Google Scholar 

  52. Bååth E (2001) Estimation of fungal growth rates in soil using 14 C-acetate incorporation into ergosterol. Soil Biol. Biochem. 33:2011–2018

    Article  Google Scholar 

  53. Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Freitag T, Guillaumaud N, Roux XL (2006) Maintenance of soil functioning following erosion of microbial diversity. Environ. Microbiol. 8:2162–2169

    Article  CAS  PubMed  Google Scholar 

  54. Schirmer M, Ijaz UZ, D’Amore R, Hall N, Sloan WT, Quince C (2015) Insight into biases and sequencing errors for amplicon sequencing with the illumina MiSeq platform. Nucleic Acids Res.43(6):e37. doi:10.1093/nar/gku1341

  55. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: paired-end assembler for illumina sequences. BMC bioinformatics 13:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, Wit P, Sánchez-García M, Ebersberger I, Sousa F (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 4:914–919

    Google Scholar 

  57. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A (2008) The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC bioinformatics 9:386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Beals EW (1984) Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data. Adv. Ecol. Res. 14:55

    Google Scholar 

  60. Clarke K, Gorley R (2006) PRIMER version 6: user manual/tutorial. PRIMER-E, Plymouth, p. 192

    Google Scholar 

  61. Pianka ER (1974) Niche overlap and diffuse competition. Proc. Natl. Acad. Sci. 71:2141–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wilson EO, MacArthur RH (1967) The theory of island biogeography. Princeton, NJ.

  63. Pianka ER (1970) On r-and K-selection. Am. Nat. 104:592–597

    Article  Google Scholar 

  64. Ngugi HK, Scherm H (2006) Biology of flower-infecting fungi. Annu. Rev. Phytopathol. 44:261–282

    Article  CAS  PubMed  Google Scholar 

  65. Watkinson SC (2009) Basidiomycota. eLS.

  66. Jasper D, Abbott L, Robson A (1989) Hyphae of a vesicular—arbuscular mycorrhizal fungus maintain infectivity in dry soil, except when the soil is disturbed. New Phytol. 112:101–107

    Article  Google Scholar 

  67. Kerfahi D, Tripathi BM, Lee J, Edwards DP, Adams JM (2014) The impact of selective-logging and forest clearance for oil palm on fungal communities in Borneo. PLoS One 9:e111525

    Article  PubMed  PubMed Central  Google Scholar 

  68. Chagas-Neto TC, Chaves GM, Colombo AL (2008) Update on the genus Trichosporon. Mycopathologia 166:121–132

    Article  PubMed  Google Scholar 

  69. Amos RE (1966) Umbelopsis versiformis, a new genus and species of the imperfects. Mycologia 58:805–808

    Article  Google Scholar 

  70. Arx, JA von (1982) On Mucoraceae s. str. and other families of the Mucorales. Sydowia. 35:10–26

  71. Evans EH (1971) Studies on Mortierella ramanniana: I. Relationship between morphology and cultural behaviour of certain isolates. Trans. Br. Mycol. Soc. 56:201–IN213

    Article  Google Scholar 

  72. Harper J, Webster J (1964) An experimental analysis of the coprophilous fungus succession. Trans. Br. Mycol. Soc. 47:511–530

    Article  Google Scholar 

  73. Lenssen JP, van de Steeg HM, de Kroon H (2004) Does disturbance favour weak competitors? Mechanisms of changing plant abundance after flooding. J. Veg. Sci. 15:305–314

    Article  Google Scholar 

  74. Violle C, Pu Z, Jiang L (2010) Experimental demonstration of the importance of competition under disturbance. Proc. Natl. Acad. Sci. 107:12925–12929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Agrios G (1988) Plant pathology, 3rd. Academic Press INC, England 388p

    Google Scholar 

  76. Lekberg Y, Meadow J, Rohr JR, Redecker D, Zabinski CA (2011) Importance of dispersal and thermal environment for mycorrhizal communities: lessons from Yellowstone National Park. Ecology 92:1292–1302

    Article  PubMed  Google Scholar 

  77. Tripathi BM, Edwards DP, Mendes LW, Kim M, Dong K, Kim H, Adams JM (2016) The impact of tropical forest logging and oil palm agriculture on the soil microbiome. Mol. Ecol. 25(10):2244–2257. doi:10.1111/mec.13620

  78. el Zahar Haichar F, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T, Achouak W (2008) Plant host habitat and root exudates shape soil bacterial community structure. The ISME journal 2:1221–1230

    Article  Google Scholar 

  79. Kim M, Kim W-S, Tripathi BM, Adams J (2014) Distinct bacterial communities dominate tropical and temperate zone leaf litter. Microb. Ecol. 67:837–848

    Article  CAS  PubMed  Google Scholar 

  80. Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol. 67:4742–4751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fitter A, Garbaye J (1994) Interactions between mycorrhizal fungi and other soil organisms. Plant Soil 159:123–132

    Article  Google Scholar 

  82. Wang Q, Gao C, Guo L-D (2011) Ectomycorrhizae associated with Castanopsis Fargesii (Fagaceae) in a subtropical forest, China. Mycol. Prog. 10:323–332

    Article  Google Scholar 

  83. Nelson PE, Dignani MC, Anaissie EJ (1994) Taxonomy, biology, and clinical aspects of Fusarium species. Clin. Microbiol. Rev. 7:479–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Puri A, Padda KP, Chanway CP (2015) Can a diazotrophic endophyte originally isolated from lodgepole pine colonize an agricultural crop (corn) and promote its growth? Soil Biol. Biochem. 89:210–216

    Article  CAS  Google Scholar 

  85. Grime J (1973) Control of species density in herbaceous vegetation. J. Environ. Manag. 1:151–167

  86. Huston MA (1983) Biological diversity: the coexistence of species on changing landscapes. Cambridge University Press, UK. Keever. C

  87. Bruns TD (1995) Thoughts on the processes that maintain local species diversity of ectomycorrhizal fungi The Significance and Regulation of Soil Biodiversity. Springer, pp. 63–73

  88. Taylor D, Bruns T (1999) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Mol. Ecol. 8:1837–1850

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dorsaf Kerfahi, Ke Dong, HoKyung Song, and Soobeom Choi for supporting experiments. We also thank Seoul National University for the sampling site access.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Adams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, H., Kim, M., Tripathi, B. et al. Changes in Soil Fungal Community Structure with Increasing Disturbance Frequency. Microb Ecol 74, 62–77 (2017). https://doi.org/10.1007/s00248-016-0919-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0919-1

Keywords

Navigation