Skip to main content
Log in

An Insight into the Secondary Metabolism of Muscodor yucatanensis: Small-Molecule Epigenetic Modifiers Induce Expression of Secondary Metabolism-Related Genes and Production of New Metabolites in the Endophyte

  • Genes and Genomes
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Muscodor spp. are proficient producers of bioactive volatile organic compounds (VOCs) with many potential applications. However, all members of this genus produce varying amounts and types of VOCs which suggests the involvement of epigenetics as a possible explanation. The members of this genus are poorly explored for the production of soluble compounds (extrolites). In this study, the polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes from an endophyte, Muscodor yucatanensis Ni30, were cloned and sequenced. The PKS genes belonged to reduced, partially reduced, non-reduced, and highly reduced subtypes. Strains over-expressing PKS genes were developed through the use of small-molecule epigenetic modifiers (suberoylanilide hydroxamic acid (SAHA) and 5-azacytidine). The putative epigenetic variants of this organism differed considerably from the wild type in morphological features and cultural characteristics as well as metabolites that were produced. Each variant produced a different set of VOCs distinct from the wild type, and several VOCs including methyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)hexane-2,4-diol and 2-carboxymethyl-3-n-hexylmaleic appeared in the variant strains, the production of which could be attributed to the activity of otherwise silent PKS genes. The bioactive extrolite brefeldin A was isolated and characterized from the wild type. However, this metabolite was not detected in EV-1, but instead, two other products were isolated and characterized as ergosterol and xylaguaianol C. Hence, M. yucatanensis has the genetic potential to produce several previously undetectable VOCs and organic solvent soluble products. It is also the case that small-molecule epigenetic modifiers can be used to produce stable variant strains of fungi with the potential to produce new molecules. Finally, this work hints to the prospect that the epigenetics of an endophytic microorganism can be influenced by any number of environmental and chemical factors associated with its host plant which may help to explain the enormous chemical diversity of secondary metabolic products found in Muscodor spp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sun X, Guo L-D, Hyde KD (2011) Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Divers. 47:85–95

    Article  Google Scholar 

  2. Hoffmeister D, Keller NP (2007) Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat. Prod. Rep. 24:393–416

    Article  CAS  PubMed  Google Scholar 

  3. Chiang YM, Lee KH, Sanchez JF, Keller NP, Wang CC (2009) Unlocking fungal cryptic natural products. Nat. Prod. Commun. 11:1505–1510

    Google Scholar 

  4. Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7:1753–1760

    Article  CAS  PubMed  Google Scholar 

  5. Cichewicz RH (2010) Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat. Prod. Rep. 27:11–22

    Article  CAS  PubMed  Google Scholar 

  6. Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet. Biol. 48:15–22

    Article  CAS  PubMed  Google Scholar 

  7. Sanchez JF, Chiang YM, Szewczyk E, Davidson AD, Ahuja M, Oakley CE, Bok JW, Keller NP, Oakley BR, Wang CC (2010) Molecular genetic analysis of the orsellinic acid/F9775 gene cluster of Aspergillus nidulans. Mol. BioSyst. 6:587–593

    Article  CAS  PubMed  Google Scholar 

  8. Heywood VH (1995) Global biodiversity assessment. Cambridge University Press, Cambridge

    Google Scholar 

  9. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol. Res. 105:1422–1432

    Article  Google Scholar 

  10. Bode HB, Bethe B, Hofs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. Chem Bio Chem 3:619–627

    Article  CAS  PubMed  Google Scholar 

  11. Bills GF, Platas G, Fillola A, Jimenez MR, Collado J, Vicente F, Martın J, Gonzalez A, Bur-Zimmermann J, Tormo JR, Pelaez F (2008) Enhancement of antibiotic and secondary metabolite detection from filamentous fungi by growth on nutritional arrays. J. Appl. Microbiol. 104:1644–1658

    Article  CAS  PubMed  Google Scholar 

  12. Chiang Y, Szewczyk E, Nayak T, Davidson AD, Sanchez JF, Lo H, Ho W, Simityan H, Kuo E, Praseuth A, Watanabe K, Oakley BR, Wang CCC (2008) Molecular genetic mining of the Aspergillus secondary metabolome: discovery of the emericellamide biosynthetic pathway. Chem Biol 15:527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shwab EK, Bok JW, Tribus M, Galehr J, Graessle S, Keller NP (2007) Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell 6:1656–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bok JW, Chiang Y-M, Szewczyk E, Reyes-Domingez Y, Davidson AD, Sanchez JF, Lo H-C, Watanabe K, Strauss J, Oakley BR, Wang CC, Keller NP (2009) Chromatin-level regulation of biosynthetic gene clusters. Nat. Chem. Biol. 5:462–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Birch PRJ, Sims PFG, Broda PJ (1998) A reporter system for analysis of regulatable promoter functions in the basidiomycete fungus Phanerochaete chrysosporium. Appl. Microbiol. 85:417–424

    Article  CAS  Google Scholar 

  16. Riyaz-Ul-Hassan S, Strobel GA, Booth E, Knighton B, Floerchinger C, Sears J (2012) Modulation of volatile organic compound formation in the Mycodiesel producing endophyte Hypoxylon sp. C1-4. Microbiology 158:464–473

    Google Scholar 

  17. Asai T, Chung YM, Sakurai H, Ozeki T, Chang FR, Yamashita K, Oshima Y (2012) Tenuipyrone, a novel skeletal polyketide from the entomopathogenic fungus, Isaria tenuipes, cultivated in the presence of epigenetic modifiers. Org. Lett. 14:513–515

    Article  CAS  PubMed  Google Scholar 

  18. Wang Q, Yuan F, Pan Q, Li M, Wang G, Zhao J, Tang K (2010) Isolation and functional analysis of the Catharanthus roseus deacetylvindoline-4-O-acetyltransferase gene promoter. Plant Cell Report 29:185–192

    Article  Google Scholar 

  19. Williams RB, Henrikson JC, Hoover AR, Lee AE, Cichewicz RH (2008) Epigenetic remodeling of the fungal secondary metabolome. Org. Biomol. Chem. 6:1895–1897

    Article  CAS  PubMed  Google Scholar 

  20. Ezra D, Hess WM, Strobel GA (2004) New endophytic isolates of Muscodor albus, a volatile-antibiotic-producing fungus. Microbiology 150:4023–4031

    Article  CAS  PubMed  Google Scholar 

  21. Riyaz-Ul-Hassan S, Strobel G, Geary B, Sears J (2013) An endophytic Nodulisporium sp. from Central America producing volatile organic compounds with both biological and fuel potential. J. Microbiol. Biotechnol. 23:29–35

    Article  CAS  PubMed  Google Scholar 

  22. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1994) Current protocols in molecular biology. Wiley, New York City

    Google Scholar 

  23. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp. 315–322

    Google Scholar 

  24. Qadri M, Rajput R, Abdin MZ, Vishwakarma RA, Riyaz-Ul-Hassan S (2014) Diversity, molecular phylogeny and bioactive potential of fungal endophytes associated with the Himalayan blue pine (Pinus wallichiana). Microb. Ecol. 67(4):877–887

    Article  PubMed  Google Scholar 

  25. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  27. González MC, Anaya AL, Glenn AE, Macías-Rubalcava ML, Hernández-Bautista BE, Hanlin RT (2009) Muscodor yucatanensis, a new endophytic ascomycete from Mexican chakah, Bursera simaruba. Mycotaxon 110:363–372

    Article  Google Scholar 

  28. Amnuaykanjanasin A, Punya J, Paungmoung P, Rungrod A, Tachaleat A, Pongpattanakitshote S, Cheevadhanarak S, Tanticharoen M (2005) Diversity of type I polyketide synthase genes in the wood-decay fungus Xylaria sp. BCC 1067. FEMS Microbiol. Lett. 251:125–136

    Article  CAS  PubMed  Google Scholar 

  29. Bingle LE, Simpson TJ, Lazarus CM (1999) Ketosynthase domain probes identify two subclasses of fungal polyketide synthase genes. Fungal Genet. Biol. 26:209–223

    Article  CAS  PubMed  Google Scholar 

  30. Nicholson TP, Rudd BA, Dawson M, Lazarus CM, Simpson TJ, Cox RJ (2001) Design and utility of oligonucleotide gene probes for fungal polyketide synthases. Chem Biol 8:157–178

    Article  CAS  PubMed  Google Scholar 

  31. Paungmoung P, Punya J, Pongpattanakitshote S, Jeamton W, Vichisoonthonkul T, Bhumiratana S, Tanticharoen M, Linne U, Marahiel MA, Cheevadhanarak S (2007) Detection of nonribosomal peptide synthetase genes in Xylaria sp. BCC1067 and cloning of XyNRPSA. FEMS Microbiol. Lett. 274:260–268

    Article  CAS  PubMed  Google Scholar 

  32. Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Bio 268:78–94

    Article  CAS  Google Scholar 

  33. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  34. Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput. Appl. Biosci. 11:681–684

    CAS  PubMed  Google Scholar 

  35. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10:845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  37. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  38. Qadri M, Deshidi R, Shah BA, Bindu K, Vishwakarma RA, Riyaz-Ul-Hassan S (2015) An endophyte of Picrorhiza kurroa Royle ex. Benth, producing menthol, phenylethyl alcohol and 3-hydroxypropionic acid, and other volatile organic compounds. World J. Microbiol. Biotechnol. 31:1647–1654

    Article  CAS  PubMed  Google Scholar 

  39. Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG (2003) Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc. Natl. Acad. Sci. U. S. A. 100:15670–15675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Glaser R, Shiftan D, Froimowitz M (2000) NMR structure determination of brefeldin-A, a 13-membered ring fungal metabolite. Magn. Reson. Chem. 38:274–280

    Article  CAS  Google Scholar 

  41. Tao R, Wang CZ, Kong ZW (2013) Antibacterial/antifungal activity and synergistic interactions between polyprenols and other lipids isolated from Ginkgo biloba L. leaves. Molecules 18:2166–2182

    Article  CAS  PubMed  Google Scholar 

  42. Wu SH, He J, Li XN, Huang R, Song F, Chen YW, Miao CP (2014) Guaiane sesquiterpenes and isopimarane diterpenes from an endophytic fungus Xylaria sp. Phytochemistry 105:197–204

    Article  CAS  PubMed  Google Scholar 

  43. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75:311–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943–2950

    Article  CAS  PubMed  Google Scholar 

  45. Harri E, Loeffler W, Sigg HP, Staehelin S, Tamm C (1963) Uber die isolierung der stoffwechselprodukte aus Penicellium brefeldianum Dodge. Helv Chim Acta 46:1235–1243

    Article  Google Scholar 

  46. Wang F, Jiao R, Cheng A, Tan S, Song Y (2007) Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp. World J. Microbiol. Biotechnol. 23:79–83

    Article  Google Scholar 

  47. Betina V (1992) Biological effects of the antibiotic brefeldin A (decumbin, cyanein, ascotoxin, synergisidin): a retrospective. Folia Microbiol (Praha) 37:3–11

    Article  CAS  Google Scholar 

  48. Misumi I, Misumi Y, Miki K, Takntsuki A, Tamura G, lkehara Y (1986) Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J. Biol. Chem. 261:11398–11403

    CAS  PubMed  Google Scholar 

  49. Fisch KM, Gillaspy AF, Gipson M, Henrikson JC, Hoover AR, Jackson L, Najar FZ, Wagele H, Cichewicz RH (2009) Chemical induction of silent pathway transcription in Aspergillus niger. J. Ind. Microbiol. Biotechnol. 36:1199–1213

    Article  CAS  PubMed  Google Scholar 

  50. Atanasova L, Knox BP, Kubicek CP, Druzhinina IS, Baker SE (2013) The polyketide synthase gene pks4 of Trichoderma reesei provides pigmentation and stress resistance. Eukaryot Cell 12:1499–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Koch L, Lodin A, Herold I, Ilan M, Carmeli S, Yarden O (2014) Sensitivity of Neurospora crassa to a marine-derived Aspergillus tubingensis anhydride exhibiting antifungal activity that is mediated by the MAS1 protein. Mar Drugs 12:4713–4731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Spakowicz DJ, Strobel SA (2015) Biosynthesis of hydrocarbons and volatile organic compounds by fungi: bioengineering potential. Appl. Microbiol. Biotechnol. 99:4943–4951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the CSIR 12th FYP project (Grant Number PMSI-BSC0117) of the Council of Scientific and Industrial Research (CSIR), New Delhi, India, and the Major Lab Project MLP1008 of the institute. MQ is grateful to ICMR, India, for a Senior Research Fellowship. We are thankful to Miss Palak Arora for maintaining the growth of the cultures. We are also thankful to Mr. Chand Raina for running the fermentors and to Mrs. Kushal Bindu for recording the GC/MS. The article bears the institutional publication number IIIM/1955/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Riyaz-Ul-Hassan.

Electronic supplementary material

ESM 1

(DOCX 398 kb.)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qadri, M., Nalli, Y., Jain, S.K. et al. An Insight into the Secondary Metabolism of Muscodor yucatanensis: Small-Molecule Epigenetic Modifiers Induce Expression of Secondary Metabolism-Related Genes and Production of New Metabolites in the Endophyte. Microb Ecol 73, 954–965 (2017). https://doi.org/10.1007/s00248-016-0901-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0901-y

Keywords

Navigation