Skip to main content
Log in

Non-ribosomal Peptide Synthases from Pseudomonas aeruginosa Play a Role in Cyclodipeptide Biosynthesis, Quorum-Sensing Regulation, and Root Development in a Plant Host

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Diverse molecules mediate cross-kingdom communication between bacteria and their eukaryotic partners and determine pathogenic or symbiotic relationships. N-acyl-L-homoserine lactone-dependent quorum-sensing signaling represses the biosynthesis of bacterial cyclodipeptides (CDPs) that act as auxin signal mimics in the host plant Arabidopsis thaliana. In this work, we performed bioinformatics, biochemical, and plant growth analyses to identify non-ribosomal peptide synthase (NRPS) proteins of Pseudomonas aeruginosa, which are involved in CDP synthesis. A reverse genetics strategy allowed the identification of the genes encoding putative multi-modular-NRPS (MM-NRPS). Mutations in these genes affected the synthesis of the CDPs cyclo(L-Pro-L-Val), cyclo(L-Pro-L-Leu), and cyclo(L-Pro-L-Tyr), while showing wild-type-like levels of virulence factors, such as violacein, elastase, and pyocyanin. When analyzing the bioactivity of purified, naturally produced CDPs, it was found that cyclo(L-Pro-L-Tyr) and cyclo(L-Pro-L-Val) were capable of antagonizing quorum-sensing-LasR (QS-LasR)-dependent signaling in a contrasting manner in the cell-free supernatants of the selected NRPS mutants, which showed QS induction. Using a bacteria-plant interaction system, we further show that the pvdJ, ambB, and pchE P. aeruginosa mutants failed to repress primary root growth, but improved root branching in A. thaliana seedlings. These results indicated that the CDP production in P. aeruginosa depended on the functional MM-NRPS, which influences quorum-sensing of bacteria and plays a role in root architecture remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Battle SE, Meyer F, Rello J, Kung VL, Hauser AR (2008) Hybrid pathogenicity island PAGI-5 contributes to the highly virulent phenotype of a Pseudomonas aeruginosa isolate in mammals. J Bacteriol 190(21):7130–7140. doi:10.1128/jb.00785-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. de Abreu PM, Farias PG, Paiva GS, Almeida AM, Morais PV (2014) Persistence of microbial communities including Pseudomonas aeruginosa in a hospital environment: a potential health hazard. BMC Microbiol 14:118. doi:10.1186/1471-2180-14-118

    Article  PubMed  PubMed Central  Google Scholar 

  3. Venturi V (2006) Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev 30(2):274–291. doi:10.1111/j.1574-6976.2005.00012.x

    Article  CAS  PubMed  Google Scholar 

  4. Lee J, Zhang L (2015) The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6(1):26–41. doi:10.1007/s13238-014-0100-x

    Article  CAS  PubMed  Google Scholar 

  5. Dandekar AA, Greenberg EP (2013) Microbiology: plan B for quorum sensing. Nat Chem Biol 9(5):292–293. doi:10.1038/nchembio.1233

    Article  CAS  PubMed  Google Scholar 

  6. de Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun 68(9):4839–4849

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3(9):685–695

    Article  CAS  PubMed  Google Scholar 

  8. Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C (2002) Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184(23):6472–6480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee J, Wu J, Deng Y, Wang J, Wang C, Wang J, Chang C, Dong Y, Williams P, Zhang L-H (2013) A cell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol 9(5):339–343. doi:10.1038/nchembio.1225

    Article  CAS  PubMed  Google Scholar 

  10. Rojas Murcia N, Lee X, Waridel P, Maspoli A, Imker HJ, Chai T, Walsh CT, Reimmann C (2015) The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) is made from glutamate and two alanine residues via a thiotemplate-linked tripeptide precursor. Front Microbiol 6. doi:10.3389/fmicb.2015.00170

  11. Seguin J, Moutiez M, Li Y, Belin P, Lecoq A, Fonvielle M, Charbonnier JB, Pernodet JL, Gondry M (2011) Nonribosomal peptide synthesis in animals: the cyclodipeptide synthase of Nematostella. Chem Biol 18(11):1362–1368. doi:10.1016/j.chembiol.2011.09.010

    Article  CAS  PubMed  Google Scholar 

  12. Bonnefond L, Arai T, Sakaguchi Y, Suzuki T, Ishitani R, Nureki O (2011) Structural basis for nonribosomal peptide synthesis by an aminoacyl-tRNA synthetase paralog. Proc Natl Acad Sci U S A 108(10):3912–3917. doi:10.1073/pnas.1019480108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miller BR, Gulick AM (2016) Structural biology of nonribosomal peptide synthetases. Methods Mol Biol 1401:3–29. doi:10.1007/978-1-4939-3375-4_1

    Article  PubMed  PubMed Central  Google Scholar 

  14. Reimer JM, Aloise MN, Harrison PM, Schmeing TM (2016) Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase. Nature 529(7585):239–242. doi:10.1038/nature16503

    Article  CAS  PubMed  Google Scholar 

  15. Campbell J, Lin Q, Geske GD, Blackwell HE (2009) New and unexpected insights into the modulation of LuxR-type quorum sensing by cyclic dipeptides. ACS Chem Biol 4(12):1051–1059. doi:10.1021/cb900165y

    Article  CAS  PubMed  Google Scholar 

  16. Galloway WRJD, Hodgkinson JT, Bowden SD, Welch M, Spring DR (2011) Quorum sensing in gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem Rev 111(1):28–67. doi:10.1021/cr100109t

    Article  CAS  PubMed  Google Scholar 

  17. Ortiz-Castro R, Díaz-Pérez C, Martínez-Trujillo M, del Río RE, Campos-García J, López-Bucio J (2011) Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proc Natl Acad Sci U S A 108(17):7253–7258. doi:10.1073/pnas.1006740108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li LL, Malone JE, Iglewski BH (2007) Regulation of the Pseudomonas aeruginosa quorum-sensing regulator VqsR. J Bacteriol 189(12):4367–4374. doi:10.1128/jb.00007-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jacobs MA, Alwood A, Thaipisuttikul I, Spencer D, Haugen E, Ernst S, Will O, Kaul R, Raymond C, Levy R, Chun-Rong L, Guenthner D, Bovee D, Olson MV, Manoil C (2003) Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 100(24):14339–14344. doi:10.1073/pnas.2036282100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GS, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143(Pt 12):3703–3711. doi:10.1099/00221287-143-12-3703

    Article  CAS  PubMed  Google Scholar 

  21. Ortiz-Castro R, Pelagio-Flores R, Pelagio-Flores R, Mendez-Bravo A, Mendez-Bravo A, Ruiz-Herrera LF, Campos-Garcia J, Lopez-Bucio J (2014) Pyocyanin, a virulence factor produced by Pseudomonas aeruginosa, alters root development through reactive oxygen species and ethylene signaling in Arabidopsis. Mol Plant Microbe Interact 27(4):364–378. doi:10.1094/MPMI-08-13-0219-R

    Article  CAS  PubMed  Google Scholar 

  22. Kohler T, Ouertatani-Sakouhi H, Cosson P, van Delden C (2014) QsrO a novel regulator of quorum-sensing and virulence in Pseudomonas aeruginosa. PLoS One 9(2):e87814. doi:10.1371/journal.pone.0087814

    Article  PubMed  PubMed Central  Google Scholar 

  23. Winson MK, Swift S, Fish L, Throup JP, Jorgensen F, Chhabra SR, Bycroft BW, Williams P, Stewart GS (1998) Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 163(2):185–192

    Article  CAS  PubMed  Google Scholar 

  24. Wyatt MA, Wang W, Roux CM, Beasley FC, Heinrichs DE, Dunman PM, Magarvey NA (2010) Staphylococcus aureus nonribosomal peptide secondary metabolites regulate virulence. Science 329(5989):294–296. doi:10.1126/science.1188888

    Article  CAS  PubMed  Google Scholar 

  25. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. doi:10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32:W665–W667. doi:10.1093/nar/gkh381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sauguet L, Moutiez M, Li Y, Belin P, Seguin J, Le Du MH, Thai R, Masson C, Fonvielle M, Pernodet JL, Charbonnier JB, Gondry M (2011) Cyclodipeptide synthases, a family of class-I aminoacyl-tRNA synthetase-like enzymes involved in non-ribosomal peptide synthesis. Nucleic Acids Res 39(10):4475–4489. doi:10.1093/nar/gkr027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gondry M, Sauguet L, Belin P, Thai R, Amouroux R, Tellier C, Tuphile K, Jacquet M, Braud S, Courcon M, Masson C, Dubois S, Lautru S, Lecoq A, Hashimoto S, Genet R, Pernodet JL (2009) Cyclodipeptide synthases are a family of tRNA-dependent peptide bond-forming enzymes. Nat Chem Biol 5(6):414–420. doi:10.1038/nchembio.175

    Article  CAS  PubMed  Google Scholar 

  29. James ED, Knuckley B, Alqahtani N, Porwal S, Ban J, Karty JA, Viswanathan R, Lane AL (2015) Two distinct cyclodipeptide synthases from a marine actinomycete catalyze biosynthesis of the same diketopiperazine natural product. ACS Synth Biol. doi:10.1021/acssynbio.5b00120

    PubMed  Google Scholar 

  30. Hirakawa H, Oda Y, Phattarasukol S, Armour CD, Castle JC, Raymond CK, Lappala CR, Schaefer AL, Harwood CS, Greenberg EP (2011) Activity of the Rhodopseudomonas palustris p-coumaroyl-homoserine lactone-responsive transcription factor RpaR. J Bacteriol 193(10):2598–2607. doi:10.1128/jb.01479-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ye L, Cornelis P, Cornelis P, Guillemyn K, Guillemyn K, Ballet S, Ballet S, Hammerich O (2014) Structure revision of N-mercapto-4-formylcarbostyril produced by Pseudomonas fluorescens G308 to 2-(2-hydroxyphenyl)thiazole-4-carbaldehyde [aeruginaldehyde]. Nat Prod Commun 9(6):789–794 (1934-578X)

    CAS  PubMed  Google Scholar 

  32. Wilson DJ, Shi C, Teitelbaum AM, Gulick AM, Aldrich CC (2013) Characterization of AusA: a dimodular nonribosomal peptide synthetase responsible for the production of aureusimine pyrazinones. Biochemistry 52(5):926–937. doi:10.1021/bi301330q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lamont IL, Martin LW (2003) Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. Microbiology 149(4):833–842. doi:10.1099/mic.0.26085-0

    Article  CAS  PubMed  Google Scholar 

  34. Ravel J, Cornelis P (2003) Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol 11(5):195–200

    Article  CAS  PubMed  Google Scholar 

  35. Li J, Wang W, Xu SX, Magarvey NA, McCormick JK (2011) Lactobacillus reuteri-produced cyclic dipeptides quench agr-mediated expression of toxic shock syndrome toxin1 in staphylococci. Proc Natl Acad Sci USA 108(8):3360–3365. doi:10.1073/pnas.1017431108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rampioni G, Pustelny C, Fletcher MP, Wright VJ, Bruce M, Rumbaugh KP, Heeb S, Cámara M, Williams P (2010) Transcriptomic analysis reveals a global alkyl-quinolone-independent regulatory role for PqsE in facilitating the environmental adaptation of Pseudomonas aeruginosa to plant and animal hosts. Environ Microbiol 12(6):1659–1673. doi:10.1111/j.1462-2920.2010.02214.x

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ortiz-Castro R, Martinez-Trujillo M, Lopez-Bucio J (2008) N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ 31(10):1497–1509. doi:10.1111/j.1365-3040.2008.01863.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the Consejo Nacional de Ciencia y Tecnología (CONACYT) of México (grant number 256119), the Marcos Moshinsky Foundation, and Universidad Michoacana de San Nicolás de Hidalgo/C.I.C.2.14 grant. Omar Gonzalez received a scholarship from CONACYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Campos-García.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 95.3 KB)

Fig. S1

(DOCX 1.16 MB)

Fig. S2

(DOCX 1.46 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, O., Ortíz-Castro, R., Díaz-Pérez, C. et al. Non-ribosomal Peptide Synthases from Pseudomonas aeruginosa Play a Role in Cyclodipeptide Biosynthesis, Quorum-Sensing Regulation, and Root Development in a Plant Host. Microb Ecol 73, 616–629 (2017). https://doi.org/10.1007/s00248-016-0896-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0896-4

Keywords

Navigation