Skip to main content
Log in

Characterization of Nosema ceranae Genetic Variants from Different Geographic Origins

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In recent years, large-scale colony losses of honey bees (Apis mellifera) have been reported and the infection with the microsporidia Nosema ceranae has been involved. However, the effect of N. ceranae at the colony level and its role in colony losses vary in different geographic areas. This difference may be related to the presence of multiple N. ceranae genetic variants resulting in different biological consequences. In this study, we analyzed the genetic diversity of 75 N. ceranae samples obtained from 13 countries and Hawaii through inter-sequence single repetition (ISSR) and evaluated if two of these genetic variants triggered different immune responses when infecting Apis mellifera iberiensis. The genetic diversity analysis showed that 41% of the samples had the same DNA amplification pattern, including samples from most European countries except Spain, while the remaining samples showed high variability. Infection assays were performed to analyze the infection levels and the immune response of bees infected with N. ceranae from Spain and Uruguay. The infected bees presented similar infection levels, and both isolates downregulated the expression of abaecin, confirming the ability of the microsporidia to depress the immune response. Only N. ceranae from Uruguay downregulated the expression level of imd compared to control bees. On the other hand, both genetic variants triggered different expression levels of lysozyme. As imd and lysozyme play important roles in the response to pathogens, these results could reflect differences in the biological consequences of N. ceranae variants in A. mellifera infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Morse R, Calderone NW (2000) The value of honey bees as pollinators of U.S. crops. Bee Cult 128:1–15

    Google Scholar 

  2. Moritz RFA, Erler S (2016) Lost colonies found in a data mine: global honey trade but not pests or pesticides as a major cause of regional honeybee colony declines. Agric Ecosyst Environ 216:44–50

    Article  Google Scholar 

  3. Carreck N, Neumann P (2010) Honey bee colony losses. J Apic Res 49:1

    Article  Google Scholar 

  4. Pirk CWW, Human H, Crewe RM, vanEngelsdorp D (2014) A survey of managed honey bee colony losses in the Republic of South Africa—2009 to 2011. J Apic Res 53:35–42

    Article  Google Scholar 

  5. Cox-Foster DL, Conlan S, Holmes EC et al (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283–287

    Article  CAS  PubMed  Google Scholar 

  6. Higes M, Martín-Hernández R, Botías C et al (2008) How natural infection by Nosema ceranae causes honeybee colony collapse. Environ Microbiol 10:2659–2669

    Article  PubMed  Google Scholar 

  7. Higes M, Martín-Hernández R, Garrido-Bailón E et al (2009) Honeybee colony collapse due to Nosema ceranae in professional apiaries. Environ Microbiol Rep 1:110–113

    Article  PubMed  Google Scholar 

  8. Naug D (2009) Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biol Conserv 142:2369–2372

    Article  Google Scholar 

  9. Doublet V, Labarussias M, de Miranda JR et al (2015) Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ Microbiol 17:969–983

    Article  CAS  PubMed  Google Scholar 

  10. Sanchez-Bayo F, Goka K (2014) Pesticide residues and bees—a risk assessment. PLoS One 9:e94482

    Article  PubMed  PubMed Central  Google Scholar 

  11. van Engelsdorp D, Hayes J, Underwood RM, Pettis J (2008) A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008. PLoS One 3:e4071

    Article  PubMed  Google Scholar 

  12. vanEngelsdorp D, Evans JD, Saegerman C et al (2009) Colony collapse disorder: a descriptive study. PLoS One 4:e6481

    Article  PubMed  PubMed Central  Google Scholar 

  13. Klee J, Besana AM, Genersch E et al (2007) Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J Invertebr Pathol 96:1–10

    Article  PubMed  Google Scholar 

  14. Gisder S, Hedtke K, Möckel N et al (2010) Five-year cohort study of Nosema spp. in Germany: does climate shape virulence and assertiveness of Nosema ceranae? Appl Environ Microbiol 76:3032–3038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Invernizzi C, Abud C, Tomasco IH et al (2009) Presence of Nosema ceranae in honeybees (Apis mellifera) in Uruguay. J Invertebr Pathol 101:150–153

    Article  PubMed  Google Scholar 

  16. Strand MR (2008) Insect hemocytes and their role in immunity. Insect Immunol 32:25–47

    Article  Google Scholar 

  17. Evans JD (2006) Beepath: an ordered quantitative-PCR array for exploring honey bee immunity and disease. J Invertebr Pathol 93:135–139

    Article  CAS  PubMed  Google Scholar 

  18. Casteels P, Ampe C, Jacobs F et al (1989) Apidaecins: antibacterial peptides from honeybees. EMBO J 8:2387–2391

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Casteels P, Ampe C, Riviere L et al (1990) Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur J Biochem 187:381–386

    Article  CAS  PubMed  Google Scholar 

  20. Casteels P, Ampe C, Jacobs F, Tempst P (1993) Functional and chemical characterization of Hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). J Biol Chem 268:7044–7054

    CAS  PubMed  Google Scholar 

  21. Casteels-Josson K, Zhang W, Capaci T et al (1994) Acute transcriptional response of the honeybee peptide-antibiotics gene repertoire and required post-translational conversion of the precursor structures. J Biol Chem 269:28569–28575

    CAS  PubMed  Google Scholar 

  22. Li Y, Zhang Q, Huang Y, Su Z (2012) Overview on the recent study of antimicrobial peptides: origins functions relative mechanisms and applications. Peptides 37:207–2015

    Article  CAS  PubMed  Google Scholar 

  23. Cox-Foster DL, Stehr JE (1994) Induction and localization of FAD-glucose dehydrogenase (GLD) during encapsulation of abiotic implants in Manduca sexta larvae. J Insect Physiol 40:235–249

    Article  CAS  Google Scholar 

  24. Vargas-Albores F, Ortega-Rubio A (1994) El sistema inmune humoral de los insectos. Tópicos Investig Posgrado IV:21–28

    Google Scholar 

  25. Amdam GV, Omholt S (2003) The hive bee to forager transition in honeybee colonies: the double repressor hypothesis. J Theor Biol 223:451–464

    Article  CAS  PubMed  Google Scholar 

  26. Nelson CM, Ihle KE, Fondrk MK et al (2007) The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol 5(3):e62

    Article  PubMed  PubMed Central  Google Scholar 

  27. Seehuus S-C, Norberg K, Gimsa U et al (2006) Reproductive protein protects functionally sterile honey bee workers from oxidative stress. Proc Natl Acad Sci U S A 103:962–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Corona M, Velarde RA, Remolina S et al (2007) Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc Natl Acad Sci U S A 104:7128–7133 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Higes M, Juarranz A, Dias-Almeida J et al (2013) Apoptosis in the pathogenesis of Nosema ceranae (Microsporidia: Nosematidae) in honey bees (Apis mellifera). Environ Microbiol Rep 5:530–536

    Article  PubMed  Google Scholar 

  30. Kurze C, Le Conte Y, Dussaubat C et al (2015) Nosema tolerant honeybees (Apis mellifera) escape parasitic manipulation of apoptosis. PLoS One 10:e0140174

    Article  PubMed  PubMed Central  Google Scholar 

  31. Scanlon M, Gordon L, Shaw A et al (1999) Susceptibility to apoptosis is reduced in the microsporidia infected host. J Eukaryot Microbiol 46:34S–35S

    Article  CAS  PubMed  Google Scholar 

  32. Chaimanee V, Chen Y, Pettis JS et al (2011) Phylogenetic analysis of Nosema ceranae isolated from European and Asian honeybees in Northern Thailand. J Invertebr Pathol 107:229–233

    Article  PubMed  Google Scholar 

  33. Hatjina F, Tsoktouridis G, Bouga M et al (2011) Polar tube protein gene diversity among Nosema ceranae strains derived from a Greek honey bee health study. J Invertebr Pathol 108:131–134

    Article  CAS  PubMed  Google Scholar 

  34. Sagastume S, Del Águila C, Martín-Hernández R et al (2011) Polymorphism and recombination for rDNA in the putatively asexual microsporidian Nosema ceranae, a pathogen of honeybees. Environ Microbiol 13:84–95

    Article  CAS  PubMed  Google Scholar 

  35. Roudel M, Aufauvre J, Corbara B et al (2013) New insights on the genetic diversity of the honeybee parasite Nosema ceranae based on multilocus sequence analysis. Parasitology 140:1346–1356

    Article  PubMed  Google Scholar 

  36. Gomez Moracho T, Maside X, Martín-Hernández R et al (2014) High levels of genetic diversity in Nosema ceranae within Apis mellifera colonies. Parasitology 141:475–481

    Article  PubMed  Google Scholar 

  37. Reddy MP, Sarla N, Siddiq E (2007) Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128:9–17

    Article  Google Scholar 

  38. Rao SN, Nath BS, Saratchandra B (2005) Characterization and phylogenetic relationships among microsporidia infecting silkworm, Bombyx mori, using inter simple sequence repeat (ISSR) and small subunit rRNA (SSU-rRNA) sequence analysis. Genome 48:355–366

    Article  CAS  PubMed  Google Scholar 

  39. Martín-Hernández R, Meana A, García-Palencia P et al (2009) Effect of temperature on the biotic potential of honeybee microsporidia. Appl Environ Microbiol 75:2554–2557

    Article  PubMed  PubMed Central  Google Scholar 

  40. Anido M, Branchiccela B, Castelli L et al (2016) Prevalence and distribution of honey bee pathogens in Uruguay. J Apic Res 54:532–540

    Article  Google Scholar 

  41. Arbulo N, Antúnez K, Salvarrey S et al (2015) High prevalence and infection levels of Nosema ceranae in bumblebees Bombus atratus and Bombus bellicosus from Uruguay. J Invertebr Pathol 130:165–168

    Article  CAS  PubMed  Google Scholar 

  42. Mendoza Y, Antúnez K, Branchiccela B et al (2014) Nosema ceranae and RNA viruses in European and Africanized honeybee colonies (Apis mellifera) in Uruguay. Apidologie 45:224–234

    Article  Google Scholar 

  43. Martín-Hernandez R, Meana A, Prieto L et al (2007) Outcome of colonization of Apis mellifera by Nosema ceranae. Appl Environ Microbiol 73:6331–6338

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sokal R, Rohlf J (1962) The comparison of dendrograms by objective methods. Taxon 11:33–40

    Article  Google Scholar 

  45. Antúnez K, Anido M, Branchiccela B et al (2015) Seasonal variation of honeybee pathogens and its association with pollen diversity in Uruguay. Microb Ecol 70:522–533

    Article  PubMed  Google Scholar 

  46. Fries I, Chauzat M-P, Chen Y-PP et al (2013) Standard methods for nosema research. J Apic Res 52:1–28

    Article  Google Scholar 

  47. Sánchez Collado JG, Higes M, Barrio L, Martín-Hernández R (2014) Flow cytometry analysis of Nosema species to assess spore viability and longevity. Parasitol Res 113:1695–1701

    Article  PubMed  Google Scholar 

  48. Antúnez K, Martín-Hernández R, Prieto L et al (2009) Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ Microbiol 11:2284–2290

    Article  PubMed  Google Scholar 

  49. Yang X, Cox-Foster DL (2005) Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. Proc Natl Acad Sci U S A 102:7470–7475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fries I, Feng F, da Silva A et al (1996) Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur J Protistol 32:356–365

    Article  Google Scholar 

  52. Fries I (1988) Infectivity and multiplication of Nosema apis Z. in the Ventriculus of the honey bee. Apidologie 19:319–328

    Article  Google Scholar 

  53. Higes M, Martín-Hernández R, Meana A (2006) Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J Invertebr Pathol 92:93–95

    Article  CAS  PubMed  Google Scholar 

  54. Huang W-F, Jiang J-H, Chen Y-W, Wang C-H (2007) A Nosema ceranae isolate from the honeybee Apis mellifera. Apidologie 38:30–37

    Article  Google Scholar 

  55. Invernizzi C, Santos E, García E et al (2011) Sanitary and nutritional characterization of honeybee colonies in Eucalyptus grandis plantations. Arch Zootec 60:1303–1314

    Article  Google Scholar 

  56. Paxton R (2010) Does infection by Nosema ceranae cause “Colony Collapse Disorder” in honey bees (Apis mellifera)? J Apic Res 49:80

    Article  Google Scholar 

  57. Muñoz I, Cepero A, Pinto MA et al (2014) Presence of Nosema ceranae associated with honeybee queen introductions. Infect Genet Evol 23:161–168

    Article  PubMed  Google Scholar 

  58. Pelin A, Selman M, Aris-Brosou S et al (2015) Genome analyses suggest the presence of polyploidy and recent human-driven expansions in eight global populations of the honeybee pathogen Nosema ceranae. Environ Microbiol 17:4443–4458

    Article  CAS  PubMed  Google Scholar 

  59. Van der Zee R, Gómez-Moracho T, Pisa L et al (2014) Virulence and polar tube protein genetic diversity of Nosema ceranae (Microsporidia) field isolates from Northern and Southern Europe in honeybees (Apis mellifera iberiensis). Environ Microbiol Rep 6:401–413

    Article  PubMed  Google Scholar 

  60. Dussaubat C, Sagastume S, Gómez-Moracho T et al (2013) Comparative study of Nosema ceranae (Microsporidia) isolates from two different geographic origins. Vet Microbiol 162:670–678

    Article  CAS  PubMed  Google Scholar 

  61. Chaimanee V, Chantawannakul P, Chen Y et al (2012) Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae. J Insect Physiol 58:1090–1095

    Article  CAS  PubMed  Google Scholar 

  62. van Oss C (1978) Phagocytosis as a surface phenomenon. Annu Rev Microbiol 32:19–39

    Article  PubMed  Google Scholar 

  63. Fontbonne R, Garnery L, Vidau C et al (2013) Comparative susceptibility of three Western honeybee taxa to the microsporidian parasite Nosema ceranae. Infect Genet Evol 17:188–194

    Article  PubMed  Google Scholar 

  64. Porrini MP, Sarlo EG, Medici SK et al (2011) Nosema ceranae development in Apis mellifera: influence of diet and infective inoculum. J Apic Res 50:35–41

    Article  Google Scholar 

  65. Botías C, Martín-Hernández R, Días J et al (2012) The effect of induced queen replacement on Nosema spp. infection in honey bee (Apis mellifera iberiensis) colonies. Environ Microbiol 14:845–859

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the researchers who sent the N. ceranae samples: M. Basualdo and M. Porrini (Argentina), E. Texeira and D. Message (Brazil), C. Castillo (Canada), M. Rodríguez and J. Martínez (Chile), and E. Santos and Y. Mendoza (Uruguay). The authors also thank C. Chambón, S. Díaz-Cetti, and G. Ramallo from Apiculture Section of INIA La Estanzuela (Uruguay) and C. Rodriguez, V. Albendea, and T. Corrales from the Honey Bee Pathology Laboratory (Spain) for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Antúnez.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 675 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Branchiccela, B., Arredondo, D., Higes, M. et al. Characterization of Nosema ceranae Genetic Variants from Different Geographic Origins. Microb Ecol 73, 978–987 (2017). https://doi.org/10.1007/s00248-016-0880-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0880-z

Keywords

Navigation