Skip to main content

Advertisement

Log in

Microbial Community Dynamics and Response to Plant Growth-Promoting Microorganisms in the Rhizosphere of Four Common Food Crops Cultivated in Hydroponics

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Plant growth promoting microorganisms (PGPMs) of the plant root zone microbiome have received limited attention in hydroponic cultivation systems. In the framework of a project aimed at the development of a biological life support system for manned missions in space, we investigated the effects of PGPMs on four common food crops (durum and bread wheat, potato and soybean) cultivated in recirculating hydroponic systems for a whole life cycle. Each crop was inoculated with a commercial PGPM mixture and the composition of the microbial communities associated with their root rhizosphere, rhizoplane/endosphere and with the recirculating nutrient solution was characterised through 16S- and ITS-targeted Illumina MiSeq sequencing. PGPM addition was shown to induce changes in the composition of these communities, though these changes varied both between crops and over time. Microbial communities of PGPM-treated plants were shown to be more stable over time. Though additional development is required, this study highlights the potential benefits that PGPMs may confer to plants grown in hydroponic systems, particularly when cultivated in extreme environments such as space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Olympios CM (1999) Overview of soilless culture: advantages, constraints, and perspectives. In: Choukr-Allah R (ed) Protected cultivation in the Mediterranean region. CIHEAM / IAV Hassan II, Paris, pp 307–324

    Google Scholar 

  2. Lee S, Lee J (2015) Beneficial bacteria and fungi in hydroponic systems: types and characteristics of hydroponic food production methods. Sci Hortic 195:206–215. doi:10.1016/j.scienta.2015.09.011

    Article  CAS  Google Scholar 

  3. Godia F, Fossen A, Peiro E, Gerbi O, Dussap G, Leys N, Arnau C, Milian E (2014) MELiSSA Pilot Plant: a facility for ground demonstration of a closed life support system. 40th COSPAR Scientific Assembly, Moscow, Russia

  4. Paradiso R, De Micco V, Buonomo R, Aronne G, Barbieri G, De Pascale S (2014) Soilless cultivation of soybean for Bioregenerative Life-Support Systems: a literature review and the experience of the MELiSSA Project – food characterisation phase I. Plant Biol 16:69–78. doi:10.1111/plb.12056

    Article  PubMed  Google Scholar 

  5. De Micco V, Buonomo R, Paradiso R, De Pascale S, Aronne G (2012) Soybean cultivar selection for Bioregenerative Life Support Systems (BLSS) – theoretical selection. Adv Space Res 49:1415–1421. doi:10.1016/j.asr.2012.02.022

    Article  Google Scholar 

  6. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586. doi:10.1023/a:1026037216893

    Article  CAS  Google Scholar 

  7. Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41. doi:10.1007/s11104-014-2131-8

    Article  CAS  Google Scholar 

  8. Dasgan HY, Aydoner G, Akyol M (2012) Use of some microorganisms as bio-fertilizers in soilless grown squash for saving chemical nutrients. International Society for Horticultural Science (ISHS), Leuven, pp 155–162

    Google Scholar 

  9. Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, Pascale SD, Bonini P, Colla G (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hortic 196:91–108. doi:10.1016/j.scienta.2015.09.002

    Article  Google Scholar 

  10. Ruzzi M, Aroca R (2015) Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci Hortic 196:124–134. doi:10.1016/j.scienta.2015.08.042

    Article  CAS  Google Scholar 

  11. Stewart-Wade S (2011) Plant pathogens in recycled irrigation water in commercial plant nurseries and greenhouses: their detection and management. Irrigation Sci 29:267–297. doi:10.1007/s00271-011-0285-1

    Article  Google Scholar 

  12. Settanni L, Miceli A, Francesca N, Cruciata M, Moschetti G (2013) Microbiological investigation of Raphanus sativus L. grown hydroponically in nutrient solutions contaminated with spoilage and pathogenic bacteria. Int J Food Microbiol 160:344–352

    Article  CAS  PubMed  Google Scholar 

  13. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959. doi:10.1128/aem.71.9.4951-4959.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Owen D, Williams AP, Griffith GW, Withers PJA (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition. Appl Soil Ecol 86:41–54. doi:10.1016/j.apsoil.2014.09.012

  15. Houlden A, Timms-Wilson TM, Day MJ, Bailey MJ (2008) Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops. FEMS Microbiol Ecol 65:193–201. doi:10.1111/j.1574-6941.2008.00535.x

    Article  CAS  PubMed  Google Scholar 

  16. Clegg CD (2006) Impact of cattle grazing and inorganic fertiliser additions to managed grasslands on the microbial community composition of soils. Appl Soil Ecol 31:73–82. doi:10.1016/j.apsoil.2005.04.003

    Article  Google Scholar 

  17. Dunfield KE, Germida JJ (2003) Seasonal changes in the rhizosphere microbial communities associated with field-grown genetically modified canola (Brassica napus). Appl Environ Microbiol 69:7310–7318. doi:10.1128/aem.69.12.7310-7318.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803. doi:10.1038/ismej.2013.196

    Article  CAS  PubMed  Google Scholar 

  19. O’Neill TM, Deery SJ, Scott G, Dickinson M (2014) Monitoring tomato root microorgansisms. International Society for Horticultural Science (ISHS), Leuven, pp 81–88

    Google Scholar 

  20. Garland JL, Levine LH, Yorio NC, Adams JL, Cook KL (2000) Graywater processing in recirculating hydroponic systems: phytotoxicity, surfactant degradation, and bacterial dynamics. Water Res 34:3075–3086. doi:10.1016/S0043-1354(00)00085-3

    Article  CAS  Google Scholar 

  21. Cirou A, Mondy S, An S, Charrier A, Sarrazin A, Thoison O, DuBow M, Faure D (2012) Efficient biostimulation of native and introduced quorum-quenching rhodococcus erythropolis populations is revealed by a combination of analytical chemistry, microbiology, and pyrosequencing. Appl Environ Microbiol 78:481–492. doi:10.1128/aem.06159-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Molina LG, Cordenonsi da Fonseca G, Morais GLD, de Oliveira LFV, Carvalho JB, Kulcheski FR, Margis R (2012) Metatranscriptomic analysis of small RNAs present in soybean deep sequencing libraries. Genet Mol Biol 35:292–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ding J, Zhang Y, Zhang H, Li X, Sun Z, Liao Y, Xia X, Zhou Y, Shi K, Yu J (2014) Effects of Fusarium oxysporum on rhizosphere microbial communities of two cucumber genotypes with contrasting Fusarium wilt resistance under hydroponic condition. Eur J Plant Pathol 140:643–653. doi:10.1007/s10658-014-0494-6

    Article  CAS  Google Scholar 

  24. Degnan PH, Ochman H (2012) Illumina-based analysis of microbial community diversity. ISME J 6:183–194, http://www.nature.com/ismej/journal/v6/n1/suppinfo/ismej201174s1.html

    Article  CAS  PubMed  Google Scholar 

  25. Stasiak M, Gidzinski D, Jordan M, Dixon M (2012) Crop selection for advanced life support systems in the ESA MELiSSA program: durum wheat (Triticum turgidum var durum). Adv Space Res 49:1684–1690. doi:10.1016/j.asr.2012.03.001

    Article  Google Scholar 

  26. Moore G, Griffith C, Peters A (2000) Bactericidal properties of ozone and its potential application as a terminal disinfectant. J Food Prot 63:1100–1106

    Article  CAS  PubMed  Google Scholar 

  27. Hoagland D, Arnon D (1950) The water-culture method for growing plants without soil. California Agri Experiment Stat 347:32

    Google Scholar 

  28. Paradiso R, Buonomo R, De Micco V, Aronne G, Palermo M, Barbieri G, De Pascale S (2012) Soybean cultivar selection for Bioregenerative Life Support Systems (BLSSs) – Hydroponic cultivation. Adv Space Res 50:1501–1511. doi:10.1016/j.asr.2012.07.025

    Article  CAS  Google Scholar 

  29. Dougher TAO, Bugbee B (1997) Effect of lamp type and temperature on development, carbon partitioning and yield of soybean. Adv Space Res 20:1895–1899. doi:10.1016/S0273-1177(97)00857-0

    Article  CAS  PubMed  Google Scholar 

  30. Wheeler RM, Mackowiak CL, Stutte GW, Sager JC, Yorio NC, Ruffe LM, Fortson RE, Dreschel TW, Knott WM, Corey KA (1996) NASA’s biomass production chamber: a testbed for bioregenerative life support studies. Adv Space Res 18:215–224. doi:10.1016/0273-1177(95)00880-N

    Article  CAS  PubMed  Google Scholar 

  31. Wheeler RM, Mackowiak CL, Stutte GW, Yorio NC, Ruffe LM, Sager JC, Prince RP, Knott WM (2008) Crop productivities and radiation use efficiencies for bioregenerative life support. Adv Space Res 41:706–713. doi:10.1016/j.asr.2007.06.059

    Article  Google Scholar 

  32. Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera C, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fertility Soils 44:501–509. doi:10.1007/s00374-007-0232-8

    Article  CAS  Google Scholar 

  33. Bashan Y (1986) Significance of timing and level of inoculation with rhizosphere bacteria on wheat plants. Soil Biol Biochem 18:297–301. doi:10.1016/0038-0717(86)90064-7

    Article  Google Scholar 

  34. Fernandez-Orozco R, Frias J, Zielinski H, Piskula MK, Kozlowska H, Vidal-Valverde C (2008) Kinetic study of the antioxidant compounds and antioxidant capacity during germination of Vigna radiata cv. emmerald, Glycine max cv. jutro and Glycine max cv. merit. Food Chem 111:622–630. doi:10.1016/j.foodchem.2008.04.028

    Article  CAS  Google Scholar 

  35. Gbikpi PJ, Crookson RK (1981) A whole-plant indicator of soybean physiological maturity. Crop Sci 21:469–472. doi:10.2135/cropsci1981.0011183X002100030030x

    Article  Google Scholar 

  36. Barillot CD, Sarde C-O, Bert V, Tarnaud E, Cochet N (2013) A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system. Ann Microbiol 63:471–476. doi:10.1007/s13213-012-0491-y

    Article  CAS  Google Scholar 

  37. Paszkowski U, Gutjahr C (2013) Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Front Plant Sci 4

  38. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41(1):e1.doi:10.1093/nar/gks808

  39. Toju H, Tanabe AS, Yamamoto S, Sato H (2012) High-coverage ITS Primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7:e40863. doi:10.1371/journal.pone.0040863

  40. Robideau GP, De Cock AWAM, Coffey MD, Voglmayr H, Brouwer H, Bala K, Chitty DW, Désaulniers N, Eggertson QA, Gachon CMM, Hu C-H, KKüpper FC, Rintoul TL, Sarhan E, Verstappen ECP, Zhang Y, Bonants PJM, Ristaino JB, Lévesque CA (2011) DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol Ecol Resour 11(6):1002–1011

  41. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi:10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Camarinha-Silva A, Jáuregui R, Chaves-Moreno D, Oxley APA, Schaumburg F, Becker K, Wos-Oxley ML, Pieper DH (2014) Comparing the anterior nare bacterial community of two discrete human populations using Illumina amplicon sequencing. Environ Microbiol 16:2939–2952. doi:10.1111/1462-2920.12362

    Article  CAS  PubMed  Google Scholar 

  43. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. doi:10.1093/bioinformatics/btr507

    Article  PubMed  PubMed Central  Google Scholar 

  44. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. doi:10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  45. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  46. Core Team R (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  47. Sumayo M, Hahm M-S, Ghim S-Y (2013) Determinants of plant growth-promoting Ochrobactrum lupini KUDC1013 involved in induction of systemic resistance against Pectobacterium carotovorum subsp. carotovorum in Tobacco Leaves. Plant Pathol J 29:174–181. doi:10.5423/ppj.si.09.2012.0143

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xiao C, Chi R, He H, Qiu G, Wang D, Zhang W (2009) Isolation of phosphate-solubilizing fungi from phosphate mines and their effect on wheat seedling growth. Appl Biochem Biotechnol 159:330–342. doi:10.1007/s12010-009-8590-3

    Article  CAS  PubMed  Google Scholar 

  49. Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants – with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513. doi:10.1016/j.micres.2008.08.007

    Article  CAS  PubMed  Google Scholar 

  50. Albareda M, Dardanelli MS, Sousa C, Megías M, Temprano F, Rodríguez-Navarro DN (2006) Factors affecting the attachment of rhizospheric bacteria to bean and soybean roots. FEMS Microbiol Lett 259:67–73. doi:10.1111/j.1574-6968.2006.00244.x

    Article  CAS  PubMed  Google Scholar 

  51. Benizri E, Baudoin E, Guckert A (2001) Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci Technol 11:557–574. doi:10.1080/09583150120076120

    Article  Google Scholar 

  52. Martínez OA, Jorquera MA, Crowley DE, Luz Mora M (2011) Influence of nitrogen fertilisation on pasture culturable rhizobacteria occurrence and the role of environmental factors on their potential PGPR activities. Biol Fertil Soils 47:875–885. doi:10.1007/s00374-011-0593-x

    Article  Google Scholar 

  53. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. doi:10.1016/j.soilbio.2009.11.024

    Article  CAS  Google Scholar 

  54. Rodríguez-Navarro DN, Dardanelli MS, Ruíz-Saínz JE (2007) Attachment of bacteria to the roots of higher plants. FEMS Microbiol Lett 272:127–136. doi:10.1111/j.1574-6968.2007.00761.x

    Article  PubMed  Google Scholar 

  55. Rattray E, Tyrrell J, Prosser J, Glover L, Killham K (1993) Effect of soil bulk density and temperature on wheat rhizosphere colonisation by lux-marked Pseudomonas fluorescens. Eur J Soil Biol 29:73–82

    Google Scholar 

  56. Beauchamp C, Kloepper J, Antoun H (1993) Detection of genetically engineered bioluminescent pseudomonads in potato rhizosphere at different temperatures. Microb Rel 1:203–207

    Google Scholar 

  57. Dimitrieva GY, Crawford RL, Yüksel GÜ (2006) The nature of plant growth-promoting effects of a pseudoalteromonad associated with the marine algae Laminaria japonica and linked to catalase excretion. J Appl Microbiol 100:1159–1169. doi:10.1111/j.1365-2672.2006.02831.x

    Article  CAS  PubMed  Google Scholar 

  58. Franks A, Egan S, Holmström C, James S, Lappin-Scott H, Kjelleberg S (2006) Inhibition of fungal colonization by Pseudoalteromonas tunicata provides a competitive advantage during surface colonization. Appl Environ Microbiol 72:6079–6087. doi:10.1128/aem.00559-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rao D, Webb JS, Kjelleberg S (2005) Competitive interactions in mixed-species biofilms containing the marine bacterium Pseudoalteromonas tunicata. Appl Environ Microbiol 71:1729–1736. doi:10.1128/aem.71.4.1729-1736.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Folman LB, Postma J, Veen JA (2001) Ecophysiological characterization of rhizosphere bacterialcommunities at different root locations and plant developmental stages of cucumber grown on rockwool. Microb Ecol 42:586–597. doi:10.1007/s00248-001-0032-x

  61. Ross KA, Feazel LM, Robertson CE, Fathepure BZ, Wright KE, Turk-MacLeod RM, Chan MM, Held NL, Spear JR, Pace NR (2012) Phototrophic phylotypes dominate mesothermal microbial mats associated with hot springs in Yellowstone National Park. Microb Ecol 64:162–170. doi:10.1007/s00248-012-0012-3

    Article  CAS  PubMed  Google Scholar 

  62. Köhler T, Dietrich C, Scheffrahn RH, Brune A (2012) High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl Environ Microbiol 78:4691–4701. doi:10.1128/aem.00683-12

    Article  PubMed  PubMed Central  Google Scholar 

  63. Doornbos RF, van Loon LC, Bakker PAHM (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. a review. Agron Sustain Dev 32:227–243. doi:10.1007/s13593-011-0028-y

    Article  Google Scholar 

  64. Biate D, Kumari A, Annapurna K, Kumar L, Ramadoss D, Reddy K, Naik S (2015) Legume root exudates: their role in symbiotic interactions. In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, India, pp 259–271

    Google Scholar 

  65. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organsisms. Annu Rev Plant Biol 57:233–266. doi:10.1146/annurev.arplant.57.032905.105159

    Article  CAS  PubMed  Google Scholar 

  66. Hartmann A, Schmid M, Tuinen D, Berg G (2008) Plant-driven selection of microbes. Plant Soil 321:235–257. doi:10.1007/s11104-008-9814-y

    Article  Google Scholar 

  67. De-la-Peña C, Badri DV, Lei Z, Watson BS, Brandão MM, Silva-Filho MC, Sumner LW, Vivanco JM (2010) Root secretion of defense-related proteins is development-dependent and correlated with flowering time. J Biol Chem 285:30654–30665. doi:10.1074/jbc.M110.119040

    Article  PubMed  PubMed Central  Google Scholar 

  68. Micallef SA, Channer S, Shiaris MP, Colón-Carmona A (2009) Plant age and genotype impact the progression of bacterial community succession in the Arabidopsis rhizosphere. Plant Signal Behav 4:777–780. doi:10.4161/psb.4.8.9229

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the MELiSSA project from the European Space Agency under contract no. 400010819/13/NL/JC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Geelen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Rarefaction curves (±SD) representing the number of OTUs discovered in control (red) and inoculated (blue) durum wheat, and control (yellow) and inoculated (green) soybean. (GIF 189 kb)

High resolution image (EPS 6224 kb)

Fig. S2

Rarefaction curves (±SD) representing the number of OTUs discovered in control (red) and inoculated (blue) bread wheat, control (green) and inoculated (purple) soybean, and in the Myco Madness PGPM mix (yellow). (GIF 176 kb)

High resolution image (EPS 4935 kb)

Fig. S3

PCoA analysis showing Bray-Curtis similarity values of evenly sub-sampled bread wheat- (A), durum wheat- (B), potato- (C) and soybean- associated (D) communities. NS_treat= nutrient solution samples treated with Myco Madness, NS_con= control nutrient solution samples, En_Con= control endosphere/rhizoplane samples, En_Treat= endosphere/rhizoplane samples from Myco Madness-treated plants, Ex_Con= control rhizosphere samples, Ex_Treat= rhizosphere samples from Myco Madness-treated plants. (GIF 52 kb)

High resolution image (EPS 545 kb)

Table S1

(DOCX 18 kb)

Table S2

(DOCX 69 kb)

Table S3

(DOCX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheridan, C., Depuydt, P., De Ro, M. et al. Microbial Community Dynamics and Response to Plant Growth-Promoting Microorganisms in the Rhizosphere of Four Common Food Crops Cultivated in Hydroponics. Microb Ecol 73, 378–393 (2017). https://doi.org/10.1007/s00248-016-0855-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0855-0

Keywords

Navigation