Skip to main content

Advertisement

Log in

Plant Identity Exerts Stronger Effect than Fertilization on Soil Arbuscular Mycorrhizal Fungi in a Sown Pasture

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal (AM) fungi play key roles in plant nutrition and plant productivity. AM fungal responses to either plant identity or fertilization have been investigated. However, the interactive effects of different plant species and fertilizer types on these symbiotic fungi remain poorly understood. We evaluated the effects of the factorial combinations of plant identity (grasses Avena sativa and Elymus nutans and legume Vicia sativa) and fertilization (urea and sheep manure) on AM fungi following 2-year monocultures in a sown pasture field study. AM fungal extraradical hyphal density was significantly higher in E. nutans than that in A. sativa and V. sativa in the unfertilized control and was significantly increased by urea and manure in A. sativa and by manure only in E. nutans, but not by either fertilizers in V. sativa. AM fungal spore density was not significantly affected by plant identity or fertilization. Forty-eight operational taxonomic units (OTUs) of AM fungi were obtained through 454 pyrosequencing of 18S rDNA. The OTU richness and Shannon diversity index of AM fungi were significantly higher in E. nutans than those in V. sativa and/or A. sativa, but not significantly affected by any fertilizer in all of the three plant species. AM fungal community composition was significantly structured directly by plant identity only and indirectly by both urea addition and plant identity through soil total nitrogen content. Our findings highlight that plant identity has stronger influence than fertilization on belowground AM fungal community in this converted pastureland from an alpine meadow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  2. Johnson D, Vandenkoornhuyse PJ, Leake JR, Gilbert L, Booth RE, Grime JP, Young JPW, Read DJ (2004) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515. doi:10.1046/j.1469-8137.2003.00938.x

    Article  Google Scholar 

  3. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72. doi:10.1038/23932

    Article  Google Scholar 

  4. van der Heijden MGA, Verkade S, de Bruin SJ (2008) Mycorrhizal fungi reduce the negative effects of nitrogen enrichment on plant community structure in dune grassland. Glob Chang Biol 14:2626–2635. doi:10.1111/j.1365-2486.2008.01691.x

    Google Scholar 

  5. Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754. doi:10.1111/j.1461-0248.2004.00620.x

    Article  Google Scholar 

  6. Klironomos J, Zobel M, Tibbett M et al (2011) Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytol 189:366–370. doi:10.1111/j.1469-8137.2010.03550.x

    Article  PubMed  Google Scholar 

  7. Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol 12:2165–2179. doi:10.1111/j.1462-2920.2009.02099.x

    CAS  PubMed  Google Scholar 

  8. Vályi K, Rillig MC, Hempel S (2015) Land-use intensity and host plant identity interactively shape communities of arbuscular mycorrhizal fungi in roots of grassland plants. New Phytol 205:1577–1586. doi:10.1111/nph.13236

    Article  PubMed  Google Scholar 

  9. Hart MM, Aleklett K, Chagnon PL et al (2015) Navigating the labyrinth: a guide to sequence-based, community ecology of arbuscular mycorrhizal fungi. New Phytol 207:235–247. doi:10.1111/nph.13340

    Article  PubMed  Google Scholar 

  10. Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11:1555–1564. doi:10.1046/j.1365-294X.2002.01538.x

    Article  CAS  PubMed  Google Scholar 

  11. Becklin KM, Hertweck KL, Jumpponen A (2012) Host identity impacts rhizosphere fungal communities associated with three alpine plant species. Microb Ecol 63:682–693. doi:10.1007/s00248-011-9968-7

    Article  PubMed  Google Scholar 

  12. Li XL, Gai JP, Cai XB, Li XL, Christie P, Zhang FS, Zhang JL (2014) Molecular diversity of arbuscular mycorrhizal fungi associated with two co-occurring perennial plant species on a Tibetan altitudinal gradient. Mycorrhiza 24:95–107. doi:10.1007/s00572-013-0518-7

    Article  CAS  PubMed  Google Scholar 

  13. Scheublin TR, Ridgway KP, Young JPW, van der Heijden MGA (2004) Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Appl Environ Microbiol 70:6240–6246. doi:10.1128/aem.70.10.6240-6246.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sikes BA, Maherali H, Klironomos JN (2014) Mycorrhizal fungal growth responds to soil characteristics, but not host plant identity, during a primary lacustrine dune succession. Mycorrhiza 24:219–226. doi:10.1007/s00572-013-0531-x

    Article  PubMed  Google Scholar 

  15. Ji BM, Bentivenga SP, Casper BB (2012) Comparisons of AM fungal spore communities with the same hosts but different soil chemistries over local and geographic scales. Oecologia 168:187–197. doi:10.1007/s00442-011-2067-0

    Article  PubMed  Google Scholar 

  16. Bainard LD, Bainard JD, Hamel C, Gan Y (2014) Spatial and temporal structuring of arbuscular mycorrhizal communities is differentially influenced by abiotic factors and host crop in a semi-arid prairie agroecosystem. FEMS Microbiol Ecol 88:333–344. doi:10.1111/1574-6941.12300

    Article  CAS  PubMed  Google Scholar 

  17. Li XL, Zhu TY, Peng F, Chen Q, Lin S, Christie P, Zhang JL (2015) Inner Mongolian steppe arbuscular mycorrhizal fungal communities respond more strongly to water availability than to nitrogen fertilization. Environ Microbiol 17:3051–3068. doi:10.1111/1462-2920.12931

    Article  PubMed  Google Scholar 

  18. Johnson NC, Tilman D, Wedin D (1992) Plant and soil controls on mycorrhizal fungal communities. Ecology 73:2034–2042. doi:10.2307/1941453

    Article  Google Scholar 

  19. Eom AH, Hartnett DC, Wilson GWT (2000) Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia 122:435–444. doi:10.1007/s004420050050

    Article  Google Scholar 

  20. Mathimaran N, Ruh R, Vullioud P, Frossard E, Jansa J (2005) Glomus intraradices dominates arbuscular mycorrhizal communities in a heavy textured agricultural soil. Mycorrhiza 16:61–66. doi:10.1007/s00572-005-0014-9

    Article  CAS  PubMed  Google Scholar 

  21. Varela-Cervero S, Vasar M, Davison J, Barea JM, Öpik M, Azcón-Aguilar C (2015) The composition of arbuscular mycorrhizal fungal communities differs among the roots, spores and extraradical mycelia associated with five Mediterranean plant species. Environ Microbiol 17:2882–2895. doi:10.1111/1462-2920.12810

    Article  PubMed  Google Scholar 

  22. Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355. doi:10.1111/j.1469-8137.2004.01159.x

    Article  Google Scholar 

  23. Kim YC, Gao C, Zheng Y, He XH, Yang W, Chen L, Wan SQ, Guo LD (2015) Arbuscular mycorrhizal fungal community response to warming and nitrogen addition in a semiarid steppe ecosystem. Mycorrhiza 25:267–276. doi:10.1007/s00572-014-0608-1

    Article  CAS  PubMed  Google Scholar 

  24. Liu YJ, Shi GX, Mao L et al (2012) Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytol 194:523–535. doi:10.1111/j.1469-8137.2012.04050.x

    Article  CAS  PubMed  Google Scholar 

  25. Eom AH, Hartnett DC, Wilson GWT, Figge DAH (1999) The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in tallgrass prairie. Am Midl Nat 142:55–70. doi:10.1674/0003-0031(1999)142[0055:teofma]2.0.co;2

    Article  Google Scholar 

  26. Zheng Y, Kim YC, Tian XF, Chen L, Yang W, Gao C, Song MH, Xu XL, Guo LD (2014) Differential responses of arbuscular mycorrhizal fungi to nitrogen addition in a near pristine Tibetan alpine meadow. FEMS Microbiol Ecol 89:594–605. doi:10.1111/1574-6941.12361

    Article  CAS  PubMed  Google Scholar 

  27. Egerton-Warburton LM, Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Appl 10:484–496. doi:10.2307/2641108

    Article  Google Scholar 

  28. Chen YL, Zhang X, Ye JS, Han HY, Wan SQ, Chen BD (2014) Six-year fertilization modifies the biodiversity of arbuscular mycorrhizal fungi in a temperate steppe in Inner Mongolia. Soil Biol Biochem 69:371–381. doi:10.1016/j.soilbio.2013.11.020

    Article  CAS  Google Scholar 

  29. Zhang ZH, Duan JC, Wang SP et al (2012) Effects of land use and management on ecosystem respiration in alpine meadow on the Tibetan plateau. Soil Tillage Res 124:161–169. doi:10.1016/j.still.2012.05.012

    Article  Google Scholar 

  30. Zhang D, Zhou ZH, Zhang B, Du SH, Liu GC (2012) The effects of agricultural management on selected soil properties of the arable soils in Tibet, China. Catena 93:1–8. doi:10.1016/j.catena.2012.01.004

    Article  CAS  Google Scholar 

  31. Zhang ZH, Duan JC, Wang SP et al (2013) Effects of seeding ratios and nitrogen fertilizer on ecosystem respiration of common vetch and oat on the Tibetan plateau. Plant Soil 362:287–299. doi:10.1007/s11104-012-1279-3

    Article  CAS  Google Scholar 

  32. IUSS WGW (2007) World Reference Base for Soil Resources 2006, first update 2007. World Soil Resources Reports No. 103, FAO, Rome

  33. Rillig MC, Field CB, Allen MF (1999) Soil biota responses to long-term atmospheric CO2 enrichment in two California annual grasslands. Oecologia 119:572–577. doi:10.1007/s004420050821

    Article  Google Scholar 

  34. Miller RM, Reinhardt DR, Jastrow JD (1995) External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103:17–23. doi:10.1007/bf00328420

    Article  Google Scholar 

  35. Daniels BA, Skipper HD (1982) Methods for the recovery and quantitative estimation of propagules from soil. In: Schenck NC (ed) Methods and principles of Mycorrhizal research. American Phytopathological Society, Minn, pp 29–37

    Google Scholar 

  36. Schwarzott D, Schüßler A (2001) A simple and reliable method for SSU rRNA gene DNA extraction, amplification, and cloning from single AM fungal spores. Mycorrhiza 10:203–207. doi:10.1007/pl00009996

    Article  CAS  Google Scholar 

  37. White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego

    Google Scholar 

  38. Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl Environ Microbiol 58:291–295

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee J, Lee S, Young JPW (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349. doi:10.1111/j.1574-6941.2008.00531.x

    Article  CAS  PubMed  Google Scholar 

  40. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/aem.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241. doi:10.1111/j.1469-8137.2010.03334.x

    Article  PubMed  Google Scholar 

  42. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. doi:10.1038/Nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  43. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1006/jmbi.1990.9999

    Article  CAS  PubMed  Google Scholar 

  44. Oksanen J, Blanchet FG, Kindt R, et al. (2013) Vegan: community ecology package. R package version 2.0-10. URL http://CRAN.R-project.org/package=vegan

  45. Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6:1007–1017. doi:10.1038/ismej.2011.159

    Article  CAS  PubMed  Google Scholar 

  46. Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19. doi:10.18637/jss.v022.i07

    Article  Google Scholar 

  47. R Core Team (2013) R: a language and environment for statistical computing. URL http://www.R-project.org/

  48. Radić T, Hančević K, Likar M, Protega I, Jug-Dujaković M, Bogdanović I (2012) Neighbouring weeds influence the formation of arbuscular mycorrhiza in grapevine. Symbiosis 56:111–120. doi:10.1007/s13199-012-0165-3

    Article  Google Scholar 

  49. Hamilton EW, Frank DA (2001) Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82:2397–2402. doi:10.2307/2679923

    Article  Google Scholar 

  50. Chen Z, He XL, Guo HJ, Yao XQ, Chen C (2012) Diversity of arbuscular mycorrhizal fungi in the rhizosphere of three host plants in the farming-pastoral zone, north China. Symbiosis 57:149–160. doi:10.1007/s13199-012-0186-y

    Article  Google Scholar 

  51. Anderson RC, Liberta AE, Dickman LA (1984) Interaction of vascular plants and vesicular-arbuscular mycorrhizal fungi across a soil moisture-nutrient gradient. Oecologia 64:111–117. doi:10.1007/Bf00377552

    Article  Google Scholar 

  52. Yang HS, Yuan YG, Zhang Q, Tang JJ, Liu Y, Chen X (2011) Changes in soil organic carbon, total nitrogen, and abundance of arbuscular mycorrhizal fungi along a large-scale aridity gradient. Catena 87:70–77. doi:10.1016/j.catena.2011.05.009

    Article  CAS  Google Scholar 

  53. Antoninka A, Reich PB, Johnson NC (2011) Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem. New Phytol 192:200–214. doi:10.1111/j.1469-8137.2011.03776.x

    Article  PubMed  Google Scholar 

  54. van Diepen LTA, Lilleskov EA, Pregitzer KS (2011) Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests. Mol Ecol 20:799–811. doi:10.1111/j.1365-294X.2010.04969.x

    Article  Google Scholar 

  55. Bahram M, Peay KG, Tedersoo L (2015) Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol 205:1454–1463. doi:10.1111/nph.13206

    Article  CAS  PubMed  Google Scholar 

  56. Bainard LD, Koch AM, Gordon AM, Newmaster SG, Thevathasan NV, Klironomos JN (2011) Influence of trees on the spatial structure of arbuscular mycorrhizal communities in a temperate tree-based intercropping system. Agric Ecosyst Environ 144:13–20. doi:10.1016/j.agee.2011.07.014

    Article  Google Scholar 

  57. Martínez-García LB, Armas C, Miranda JD, Padilla FM, Pugnaire FI (2011) Shrubs influence arbuscular mycorrhizal fungi communities in a semi-arid environment. Soil Biol Biochem 43:682–689. doi:10.1016/j.soilbio.2010.12.006

    Article  Google Scholar 

  58. Aguilar-Trigueros CA, Powell JR, Anderson IC, Antonovics J, Rillig MC (2014) Ecological understanding of root-infecting fungi using trait-based approaches. Trends Plant Sci 19:432–438. doi:10.1016/j.tplants.2014.02.006

    Article  CAS  PubMed  Google Scholar 

  59. Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant-soil system. Annu Rev Environ Resour 30:75–115. doi:10.1146/annurev.energy.30.050504.144212

    Article  Google Scholar 

  60. De Deyn GB, Quirk H, Bardgett RD (2011) Plant species richness, identity and productivity differentially influence key groups of microbes in grassland soils of contrasting fertility. Biol Lett 7:75–78. doi:10.1098/rsbl.2010.0575

    Article  PubMed  Google Scholar 

  61. Bever JD, Dickie IA, Facelli E et al (2010) Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol 25:468–478. doi:10.1016/j.tree.2010.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  62. Torrecillas E, Alguacil MM, Roldan A (2012) Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid Mediterranean prairies. Appl Environ Microbiol 78:6180–6186. doi:10.1128/Aem.01287-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Toljander JF, Santos-González JC, Tehler A, Finlay RD (2008) Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. FEMS Microbiol Ecol 65:323–338. doi:10.1111/j.1574-6941.2008.00512.x

    Article  CAS  PubMed  Google Scholar 

  64. Bünemann EK, Schwenke GD, van Zwieten L (2006) Impact of agricultural inputs on soil organisms—a review. Aust J Soil Res 44:379–406. doi:10.1071/sr05125

    Article  Google Scholar 

  65. Lin XG, Feng YZ, Zhang HY, Chen RR, Wang JH, Zhang JB, Chu HY (2012) Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in north China revealed by 454 pyrosequencing. Environ Sci Technol 46:5764–5771. doi:10.1021/es3001695

    Article  CAS  PubMed  Google Scholar 

  66. Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4:337–345. doi:10.1038/ismej.2009.122

    Article  PubMed  Google Scholar 

  67. Jansa J, Erb A, Oberholzer H-R, Šmilauer P, Egli S (2014) Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol Ecol 23:2118–2135. doi:10.1111/mec.12706

    Article  CAS  PubMed  Google Scholar 

  68. Davison J, Moora M, Öpik M et al (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970–973. doi:10.1126/science.aab1161

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to appreciate Dong-Qing Chen and Wei Yang for the assistance with soil sampling and Xiao-Ling Zhang for the support on bioinformatics analysis. We thank the editor and anonymous referees for valuable suggestions and constructive comments on earlier versions of the manuscript. This study was financially supported by the National Natural Science Foundation of China (nos. 31470228, 41001149, 31070434) and Strategic Priority Research Program (B) of the Chinese Academy of Sciences (no. XDB05010200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Dong Guo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Abundance of arbuscular mycorrhizal fungal OTUs in different treatments. Non-parametric Kruskal–Wallis test was applied to show the effect of plant identity (PI) and fertilization (F) on the abundance of OTU10 (a), OTU12 (b), OTU46 (e), and OTU50 (f), which did not satisfy the homogeneity of variance, followed by pairwise comparisons at P < 0.05. Two-way ANOVA revealed the effect of PI, F, and their interaction (PI × F) on the abundance of OTU25 (c) and OTU39 (d), which satisfied the homogeneity of variance, followed by Tukey’s HSD test at P < 0.05. Data are means ± SE. Shared letters above bars (lowercase) and lines (uppercase) denote no significant difference among nine treatments and three plant species, respectively. ns, P ≥ 0.05; *P < 0.05; **P < 0.01; ***P < 0.001. (DOC 115 kb)

Figure S2

Abundance (a–d) and OTU richness (e–g) of arbuscular mycorrhizal fungal families in different treatments. Non-parametric Kruskal–Wallis test was applied to show the effect of plant identity (PI) and fertilization (F) on the abundance of Archaeosporaceae (a) and Gigasporaceae (d) and the richness of Archaeosporaceae (e), which did not satisfy the homogeneity of variance, followed by pairwise comparisons at P < 0.05. Two-way ANOVA revealed the effect of PI, F, and their interaction (PI × F) on the abundance of Claroideoglomeraceae (b) and Diversisporaceae (c) and the richness of Diversisporaceae (f) and Glomeraceae (g), which satisfied the homogeneity of variance, followed by Tukey’s HSD test at P < 0.05. Data are means ± SE. Shared letters above bars (lowercase) and lines (uppercase) denote no significant differences among nine treatments and three plant species, respectively. ns, P ≥ 0.05; *P < 0.05; **P < 0.01; ***P < 0.001. (DOC 140 kb)

ESM 3

(DOC 49 kb)

ESM 4

(DOC 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Chen, L., Luo, CY. et al. Plant Identity Exerts Stronger Effect than Fertilization on Soil Arbuscular Mycorrhizal Fungi in a Sown Pasture. Microb Ecol 72, 647–658 (2016). https://doi.org/10.1007/s00248-016-0817-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0817-6

Keywords

Navigation