Skip to main content
Log in

Molecular Characterisation and Co-cultivation of Bacterial Biofilm Communities Associated with the Mat-Forming Diatom Didymosphenia geminata

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Didymosphenia geminata (Lyngbye) M. Schmidt is a stalked freshwater diatom that is expanding its range globally. In some rivers, D. geminata forms thick and expansive polysaccharide-dominated mats. Like other stalked diatoms, D. geminata cells attach to the substratum with a pad of adhesive extracellular polymeric substance. Research on D. geminata and other diatoms suggests that bacterial biofilm composition may contribute to successful attachment. The aim of this study was to investigate the composition and role of bacterial biofilm communities in D. geminata attachment and survival. Bacterial biofilms were collected at four sites in the main stem of a river (containing D. geminata) and in four tributaries (free of D. geminata). Samples were characterised using automated rRNA intergenic spacer analysis and high-throughput sequencing (HTS). Mat-associated bacteria were isolated and their effect on the early establishment of D. geminata cells assessed using co-culturing experiments. ARISA and HTS data showed differences in bacterial communities between samples with and without D. geminata at two of the four sites. Samples with D. geminata had a higher relative abundance of Sphingobacteria (p < 0.01) and variability in community composition was reduced. Analysis of the 76 bacteria isolated from the mat revealed 12 different strains representing 8 genera. Co-culturing of a Carnobacterium sp. with D. geminata reduced survival (p < 0.001) and attachment (p < 0.001) of D. geminata. Attachment was enhanced by Micrococcus sp. and Pseudomonas sp. (p < 0.001 and p < 0.01, respectively). These data provide evidence that bacteria play a role in the initial attachment and on-going survival of D. geminata, and may partly explain observed distribution patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Whitton BA, Ellwood NTW, Kawecka B (2009) Biology of the freshwater diatom Didymosphenia: a review. Hydrobiologia 630:1–37

    Article  CAS  Google Scholar 

  2. Blanco S, Ector L (2009) Distribution, ecology and nuisance effects of the freshwater invasive diatom Didymosphenia geminata (Lyngbye) M. Schmidt: a literature review. Nova Hedwigia 88:347–422

    Article  Google Scholar 

  3. Spaulding SA, Elwell L (2007) Increase in nuisance blooms and geographic expansion of the freshwater diatom Didymosphenia geminata: recommendations for response. White Paper. USEPA Region 8 and Federation of Fly Fishers. Available from: http://www.epa.gov/region8/water/didymosphenia/White%20Paper%20Jan%202007.pdf

  4. Kilroy C, Unwin M (2011) The arrival and spread of the bloom-forming, freshwater diatom, Didymosphenia geminata, in New Zealand. Aquat Invasions 6:249–262

    Article  Google Scholar 

  5. Sutherland S, Rodway M, Kilroy C, Jarvie B, Hughes G (2007) The survival of Didymosphenia geminata in three rivers and associated spring-fed tributaries in the South Island of New Zealand. Southland Fish & Game Report to MAF Biosecurity New Zealand, 38 pp

  6. Bothwell ML, Taylor BW, Kilroy C (2014) The Didymo story: the role of low dissolved phosphorus in the formation of Didymosphenia geminata blooms. Diatom Res 29:229–236

    Article  Google Scholar 

  7. Taylor BW, Bothwell ML (2014) The origin of invasive microorganisms matters for science, policy, and management: the case of Didymosphenia geminata. Bioscience 64:531–538

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bothwell ML, Kilroy C (2011) Phosphorus limitation of the freshwater benthic diatom Didymosphenia geminata determined by the frequency of dividing cells. Freshw Biol 56:565–578

    Article  CAS  Google Scholar 

  9. Kilroy C, Bothwell M (2011) Environmental control of stalk length in the bloom-forming, freshwater benthic diatom Didymosphenia geminata (Bacillariophyceae). J Phycol 47:981–989

    Article  PubMed  Google Scholar 

  10. Kilroy C, Bothwell ML (2012) Didymosphenia geminata growth rates and bloom formation in relation to ambient dissolved phosphorus concentration. Freshw Biol 57:641–653

    Article  CAS  Google Scholar 

  11. Kilroy C, Leathwick J, Dey K, Blair N, Roulston H, Sykes J, Sutherland D (2007) Predicting the suitability of New Zealand river and lake habitats for colonisation and growth of the invasive, non-indigenous diatom, Didymosphenia geminata. Prepared for Biosecurity New Zealand. National Institute of Water and Atmospheric Research, New Zealand, Client Report CHC2007-062, 93 pp

  12. Kuhajek JM, Lemoine M, Kilroy C, Cary SC, Gerbeaux P, Wood SA (2014) Laboratory study of the survival and attachment of Didymosphenia geminata (Bacillariophyceae) in water sourced from rivers throughout New Zealand. Phycologia 53:1–9

    Article  Google Scholar 

  13. Bergey EA, Cooper JT, Phillips BC (2010) Substrate characteristics affect colonization by the bloom-forming diatom Didymosphenia geminata. Aquat Ecol 44:33–40

    Article  CAS  Google Scholar 

  14. Gardes A, Iversen MH, Grossart H-P, Passow U, Ullrich MS (2011) Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii. ISME J 5:436–445

    Article  PubMed  Google Scholar 

  15. Bruckner CG, Bahulikar R, Rahalkar M, Schink B, Kroth PG (2008) Bacteria associated with benthic diatoms from Lake Constance: phylogeny and influences on diatom growth and secretion of extracellular polymeric substances. Appl Environ Microbiol 74:7740–7749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. APHA, AWWA & WEF (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association (APHA), American Water Works Association (AWWA), & Water Environment Federation (WEF), 1368 pp

  17. Cardinale M, Brusetti L, Quatrini P, Borin S, Puglia AM, Rizzi A, Zanardini E, Sorlini C, Corselli C, Daffonchio D (2004) Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl Environ Microbiol 70:6147–6156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wood S, Casas M, Taylor D, McNabb P, Salvitti L, Ogilvie S, Cary SC (2012) Depuration of tetrodotoxin and changes in bacterial communities in Pleurobranchea maculata adults and egg masses maintained in captivity. J Chem Ecol 38:1342–1350

    Article  CAS  PubMed  Google Scholar 

  19. Abdo Z, Schüette UME, Bent SJ, Williams CJ, Forney LJ, Joyce P (2006) Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environ Microbiol 8:929–938

    Article  PubMed  Google Scholar 

  20. RCoreTeam (2014) R: a language and environment for statistical computing, on R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed

  21. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2010) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNAS 108:4516–4522

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642

    Article  CAS  PubMed  Google Scholar 

  26. Imazaki I, Kobori Y (2010) Improving the culturability of freshwater bacteria using FW70, a low-nutrient solid medium amended with sodium pyruvate. Can J Microbiol 56:333–341

    Article  CAS  PubMed  Google Scholar 

  27. Giovannoni SJ (1991) The polymerase chain reaction. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 177–203

    Google Scholar 

  28. Lane DJ (1991) 16S/23S rDNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  29. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, Geer LY, Kapustin Y, Khovayko O, Landsman D, Lipman DJ, Madden TL, Maglott DR, Ostell J, Miller V, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Sirotkin K, Souvorov A, Starchenko G, Tatusov RL, Tatusova TA, Wagner L, Yaschenko E (2007) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 35:D5–D12

    Article  CAS  PubMed  Google Scholar 

  30. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  31. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Noble RT, Fuhrman JA (1998) Use of SYBRE Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Microb Ecol 14:113–118

    Article  Google Scholar 

  33. Kuhajek JM, Wood SA (2014) Novel techniques for the short-term culture and laboratory study of Didymosphenia geminata. Diatom Res 29:293–301

    Article  Google Scholar 

  34. Besemer K, Peter H, Logue JB, Langenheder S, Lindstrom ES, Tranvik LJ, Battin TJ (2012) Unraveling assembly of stream biofilm communities. ISME J 6:1459–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eiler A, Bertilsson S (2007) Flavobacteria blooms in four eutrophic lakes: linking population dynamics of freshwater bacterioplankton to resource availability. Appl Environ Microbiol 73:3511–3518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sheu S-Y, Chiu TF, Cho N-T, Chou J-H, Sheu D-S, Arun AB, Young C-C, Chen CA, Wang J-T, Chen W-M (2009) Flectobacillus roseus sp. nov., isolated from freshwater in Taiwan. Int J Syst Evol Microbiol 59:2546–2551

    Article  CAS  PubMed  Google Scholar 

  37. Martiny AC, Jørgensen TM, Albrechtsen H-J, Arvin E, Molin S (2003) Long-term succession of structure and diversity of a biofilm formed in a model drinking water distribution system. Appl Environ Microbiol 69:6899–6907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brasell KA, Heath MW, Ryan KG, Wood SA (2015) Successional change in microbial communities of benthic Phormidium-dominated biofilms. Microb Ecol 69:254–266

    Article  CAS  PubMed  Google Scholar 

  39. Rost AL, Fritsen CH, Davis CJ (2011) Distribution of freshwater diatom Didymosphenia geminata in streams in the Sierra Nevada, USA, in relation to water chemistry and bedrock geology. Hydrobiologia 665:157–167

    Article  CAS  Google Scholar 

  40. Gretz MR, Riccio ML, Kiemle SN, Domozych DS, Spaulding SA (2007) Didymosphenia geminata as a nuisance diatom: runaway stalk production results in mats with significant environmental impact. J Phycol 43:55–56

    Article  Google Scholar 

  41. Johnson LM, Hoagland KD, Gretz MR (1995) Effects of bromide and iodide on stalk secretion in the biofouling diatom Achnanthes longipes (Bacillariophyceae). J Phycol 31:401–412

    Article  CAS  Google Scholar 

  42. Kuhajek JM, Wood SA (2013) Didymo phase 4: the influence of water chemistry and biofilm composition on Didymosphenia geminata establishment. Prepared for Ministry of Primary Industries. Cawthron Report No. 2347, 33 p

  43. Cooksey B, Cooksey KE (1980) Calcium is necessary for motility in the diatom Amphora coffeaeformis. Plant Physiol 65:129–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cohn SA, Disparti NC (1994) Environmental factors influencing diatom cell motility. J Phycol 30:818–828

    Article  Google Scholar 

  45. Cooksey KE (1981) Requirement for calcium in adhesion of a fouling diatom to glass. Appl Environ Microbiol 41:1378–1382

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Larned S, Arscott D, Blair N, Jarvie B, Jellyman D, Lister K, Schallenberg M, Sutherland S, Vopel K, Wilcock B (2007) Ecology of Didymosphenia geminata in New Zealand. Habitat and ecosystem effects—phase 2. Prepared for Biosecurity New Zealand. National Institute of Water and Atmospheric Research Client Report CHC2006-086, 127 pp

  47. Lindstrøm E-A, Skulberg O (2008) Didymosphenia geminata—a native diatom species of Norwegian rivers coexisting with the Atlantic salmon. In: Proceedings of the 2007 International Workshop on Didymosphenia geminata (Ed. by M.L. Bothwell & S.A. Spaulding), pp 35–40. Canadian Technical Report on Fisheries and Aquatic Sciences 2795

  48. González C-J, López-Díaz T-M, María LuisaGarcía L, Prieto M, Otero A (1999) Bacterial microflora of mild brown trout (Salmo trutta), wild wike (Esox lucius), and qquacultured rainbow trout (Oncorhynchus mykiss). J Food Prot 2:1270–1277

    Google Scholar 

  49. Raichand R, Pareek S, Singh NK, Mayilraj S (2012) Exiguobacterium aquaticum sp. nov., a member of the genus Exiguobacterium. Int J Syst Evol Microbiol 62:2150–2155

    Article  CAS  PubMed  Google Scholar 

  50. Buswell CM, Herlihy YM, Marsh PD, Keevil CW, Leach SA (1997) Coaggregation amongst aquatic biofilm bacteria. J Appl Microbiol 83:477–484

    Article  Google Scholar 

  51. Stackebrandt E, Lang E, Cousin S, Päuker O, Brambilla E, Kroppenstedt R, Lünsdorf H (2007) Deefgea rivuli gen. nov., sp. nov., a member of the class Betaproteobacteria. Int J Syst Evol Microbiol 57:639–645

    Article  CAS  PubMed  Google Scholar 

  52. Pellett S, Bigley DV, Grimes DJ (1983) Distribution of Pseudomonas aeruginosa in a riverine ecosystem. Appl Environ Microbiol 45:328–332

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Miñana-Galbis D, Farfán M, Fusté MC, Lorén JG (2007) Aeromonas bivalvium sp. nov., isolated from bivalve molluscs. Int J Syst Evol Microbiol 57:582–587

    Article  PubMed  Google Scholar 

  54. Coquet L, Cosette P, Quillet L, Petit F, Junter GA, Jouenne T (2002) Occurrence and phenotypic characterization of Yersinia ruckeri strains with biofilm-forming capacity in a rainbow trout farm. Appl Environ Microbiol 68:470–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Biessy L, Atalah J, Beuzenberg V, Wood SA (2016) Measuring the influence of nutrients and river water on the photosynthetic efficiency of Didymosphenia geminata using pulse amplitude modulated fluorometry. Diatom Res. doi:10.1080/0269249X.2016.1182074

    Google Scholar 

  56. Jellyman PG, Clearwater SJ, Clayton JS, Kilroy C, Blair N, Hickey CW, Biggs BJF (2011) Controlling the invasive diatom Didymosphenia geminata: an ecotoxicity assessment of four potential biocides. Arch Environ Contam Toxicol 61:115–127

    Article  CAS  PubMed  Google Scholar 

  57. Rickard AH, Leach SA, Hall LS, Buswell CM, High NJ, Handley PS (2002) Phylogenetic relationships and coaggregation ability of freshwater biofilm bacteria. Appl Environ Microbiol 68:3644–3650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Rosemary Bird (MPI), Philippe Gerbeaux (Department of Conservation) and Cathy Kilroy (National Institute of Water and Atmospheric Research) for valuable feedback during the study, and Jonathan Banks, Ron Fyfe and Kati Doehring (Cawthron Institute) for technical assistance. This project was funded by the New Zealand Ministry of Primary Industries (MPI). JB thanks the Marie Curie International Research Staff Exchange Scheme Fellowship (PIRSES-GA-2011-295223) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna A. Wood.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandes, J., Kuhajek, J.M., Goodwin, E. et al. Molecular Characterisation and Co-cultivation of Bacterial Biofilm Communities Associated with the Mat-Forming Diatom Didymosphenia geminata . Microb Ecol 72, 514–525 (2016). https://doi.org/10.1007/s00248-016-0816-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0816-7

Keywords

Navigation