Skip to main content
Log in

Spatial Patterns of bphA Gene Diversity Reveal Local Adaptation of Microbial Communities to PCB and PAH Contaminants

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Biphenyl dioxygenases, encoded by the bphA gene, initiate the oxidation of polychlorinated biphenyls (PCBs) and specify the substrate range of PCB congeners metabolized by bacteria. Increased bphA gene diversity within microbial communities may allow a broader range of PCB congeners to be catabolized, thus resulting in greater PCB degradation. To assess the role of PCBs in modulating bphA gene diversity, 16S ribosomal RNA (rRNA) gene and bphA environmental DNA libraries were generated from bacterial communities in sediments with a steep gradient of PCB contamination. Multiple measures of sequence diversity revealed greater heterogeneity of bphA sequences in polluted compared to unpolluted locations. Codon-based signatures of selection in bphA sequences provided evidence of purifying selection. Unifrac analysis of 16S rRNA sequences revealed independent taxonomic lineages from polluted and unpolluted locations, consistent with the presence of locally adapted bacterial communities. Phylogenetic analysis of bphA sequences indicated that dioxygenases from sediments were closely related to previously characterized dioxygenases that metabolize PCBs and polynuclear aromatic hydrocarbons (PAHs), consistent with high levels of these contaminants within the studied sediments. Structural analyses indicated that the BphA protein of Rhodococcus jostii, capable of metabolizing both PCBs and PAHs, provided a more optimal modeling template for bphA sequences reported in this study than a BphA homologue with more restricted substrate specificity. Results from this study suggest that PCBs and PAHs may drive local adaptation of microbial communities by acting as strong selective agents for biphenyl dioxygenases capable of metabolizing a wide range of congeners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shade A, Peter H, Allison SD et al (2012) Fundamentals of microbial community resistance and resilience. Front Microbiol 3:417

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tyagi M, da Fonseca MMR, de Carvalho CC (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22(2):231–241

    Article  CAS  PubMed  Google Scholar 

  3. Sheik CS, Mitchell TW, Rizvi FZ, Rehman Y, Faisal M, Hasnain S, McInerney MJ, Krumholz LR (2012) Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure. PLoS ONE 7(6):e40059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Whiteley AS, Wiles S, Lilley AK, Philp J, Bailey MJ (2001) Ecological and physiological analyses of Pseudomonad species within a phenol remediation system. J Microbiol Methods 44(1):79–88

    Article  CAS  PubMed  Google Scholar 

  5. Hoostal MJ, Bouzat JL (2008) The modulating role of dissolved organic matter on spatial patterns of microbial metabolism in Lake Erie sediments. Microb Ecol 55:358–368

    Article  PubMed  Google Scholar 

  6. Hoostal MJ, Bidart-Bouzat MG, Bouzat JL (2008) Local adaptation of microbial communities to heavy metal stress in polluted sediments of Lake Erie. FEMS Microbiol Ecol 65:156–168

    Article  CAS  PubMed  Google Scholar 

  7. Findlay SE, Sinsabaugh RL, Sobczak WV, Hoostal M (2003) Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter. Limnol Oceanogr 48(4):1608–1617

    Article  CAS  Google Scholar 

  8. Langenheder S, Lindström ES, Tranvik LJ (2006) Structure and function of bacterial communities emerging from different sources under identical conditions. Appl Environ Microbiol 72(1):212–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gołębiewski M, Deja-Sikora E, Cichosz M, Tretyn A, Wróbel B (2014) 16S rDNA pyrosequencing analysis of bacterial community in heavy metals polluted soils. Microb Ecol 67(3):635–647

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brito EM, De la Cruz BM, Caretta CA, Goñi-Urriza M, Andrade LH, Cuevas-Rodríguez G, Malm O, Torres JPM, Simon M, Guyoneaud R (2015) Impact of hydrocarbons, PCBs and heavy metals on bacterial communities in Lerma River, Salamanca, Mexico: investigation of hydrocarbon degradation potential. Sci Total Environ 521:1–10

    Article  PubMed  Google Scholar 

  11. DeBruyn JM, Mead TJ, Wilhelm SW, Sayler GS (2009) PAH biodegradative genotypes in Lake Erie sediments: evidence for broad geographical distribution of pyrene-degrading Mycobacteria. Environ Sci Technol 43:3467–3473

    Article  CAS  PubMed  Google Scholar 

  12. Parnell JJ, Denef VJ, Park J, Tsoi T, Tiedje JM (2010) Environmentally relevant parameters affecting PCB degradation: carbon source-and growth phase-mitigated effects of the expression of the biphenyl pathway and associated genes in Burkholderia xenovorans LB400. Biodegradation 21(1):147–156

    Article  CAS  PubMed  Google Scholar 

  13. Gong Y, Tian H, Wang L, Yu S, Ru S (2014) An integrated approach combining chemical analysis and an in vivo bioassay to assess the estrogenic potency of a municipal solid waste landfill leachate in Qingdao. PLoS ONE 9(4):e95597

    Article  PubMed  PubMed Central  Google Scholar 

  14. Krishnan D, Cromwell HC, Meserve L (2014) Effects of polychlorinated biphenyl (PCB) exposure on response perseveration and ultrasonic vocalization emission in rat during development. Endocr Disruptors 2(1):e969608

    Article  Google Scholar 

  15. Dover EN, Mankin DE, Cromwell HC, Phuntumart V, Meserve LA (2015) Polychlorinated biphenyl exposure alters oxytocin receptor gene expression and maternal behavior in rat model. Endocr Disruptors 3(1):e979681

    Article  Google Scholar 

  16. Provost TL, Juarez de Ku LM, Zender C, Meserve LA (1999) Dose- and age-dependent alterations in choline acetyltransferase (ChAT) activity, learning and memory, and thyroid hormones in 15- and 30-day old rats exposed to 1.25 or 12.5 PPM polychlorinated biphenyl (PCB) beginning at conception. Prog Neuropsychopharmacol Biol Psychiatry 23:915–928

    Article  CAS  PubMed  Google Scholar 

  17. Kramer S, Hikel SM, Adams K, Hinds D, Moon K (2012) Current status of the epidemiologic evidence linking polychlorinated biphenyls and non-hodgkin lymphoma, and the role of immune dysregulation. Environ Health Perspect 120(8):1067–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Helm PA, Gewurtz SB, Whittle DM, Marvin CH, Fisk AT, Tomy GT (2008) Occurrence and biomagnification of polychlorinated naphthalenes and non-and mono-ortho PCBs in Lake Ontario sediment and biota. Environ Sci Technol 42(4):1024–1031

    Article  CAS  PubMed  Google Scholar 

  19. Furukawa K, Fujihara H (2008) Microbial degradation of polychlorinated biphenyls: biochemical and molecular features. J Biosci Bioeng 105(5):433–449

    Article  CAS  PubMed  Google Scholar 

  20. Vaillancourt FH, Bolin JT, Eltis LD (2006) The ins and outs of ring-cleaving dioxygenases. Crit Rev Biochem Mol Biol 41:241–267

    Article  CAS  PubMed  Google Scholar 

  21. Colbert CL, Agar NY, Kumar P (2013) Structural characterization of Pandoraea pnomenusa B-356 biphenyl dioxygenase reveals features of potent polychlorinated biphenyl-degrading enzymes. PLoS ONE 8(1):e52550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Erickson B, Mondello F (1993) Enhanced biodegradation of polychlorinated biphenyls after site-directed mutagenesis of a biphenyl dioxygenase gene. Appl Environ Microbiol 59:3858–3862

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Seeger M, Hernández M, Méndez V, Ponce B, Córdova M, González M (2010) Bacterial degradation and bioremediation of chlorinated herbicides and biphenyls. J Soil Sci Plant Nutr 10(3):320–332

    Article  Google Scholar 

  24. Kumar P, Mohammadi M, Viger JF, Barriault D, Gomez-Gil L, Eltis LD, Sylvestre M (2011) Structural insight into the expanded PCB-degrading abilities of a biphenyl dioxygenase obtained by directed evolution. J Mol Biol 405(2):531–547

    Article  CAS  PubMed  Google Scholar 

  25. Leigh MB, Prouzová P, Macková M, Tomás M, Nagle DP, Fletcher JS (2006) Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl Environ Microbiol 72(4):2331–2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang W, Wang H, Zhang R, Yu XZ, Qian PY, Wong MH (2010) Bacterial communities in PAH contaminated soils at an electronic-waste processing center in China. Ecotoxicol 19(1):96–104

    Article  CAS  Google Scholar 

  27. Petrić I, Bru D, Udiković-Kolić N, Hršak D, Philippot L, Martin-Laurent F (2011) Evidence for shifts in the structure and abundance of the microbial community in a long-term PCB-contaminated soil under bioremediation. J Hazard Mater 195:254–260

    Article  PubMed  Google Scholar 

  28. Hoostal MJ, Bullerjahn GS, McKay RM (2002) Molecular assessment of the potential for in situ bioremediation of PCBs from aquatic sediments. Hydrobiologia 469(1–3):59–65

    Article  CAS  Google Scholar 

  29. Yagi JM, Madsen EL (2009) Diversity, abundance, and consistency of microbial oxygenase expression and biodegradation in a shallow contaminated aquifer. Appl Environ Microbiol 75(20):6478–6487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31

    Article  CAS  PubMed  Google Scholar 

  31. Wenning RJ, Batley GE, Ingersoll CG, Moore DW (eds) (2005) Use of sediment quality guidelines and related tools for the assessment of contaminated sediments. Society of Environmental Toxicology and Chemistry (SETAC), Pensacola

    Google Scholar 

  32. U.S. Environmental Protection Agency (2007) Sediment sampling report for Duck and Otter Creeks Toledo and Oregon, Ohio

  33. Tetra Tech EM Inc (2008) Screening human health risk assessment. Duck and Otter creeks, Toledo and Oregon, Ohio

    Google Scholar 

  34. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. PNAS 82:6955–6959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schwieger F, Tebbe CC (2000) A new approach to utilize PCR-single-strand conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876

    Google Scholar 

  36. Fuhrman JA (2008) Measuring diversity. In: Zengler K (ed) Accessing uncultivated microorganisms: from the environment to organisms and genomes and back. ASM Press, Washington, pp 131–151

    Chapter  Google Scholar 

  37. Bouzat JL, Hoostal MJ, Looft T (2013) Spatial patterns of bacteria community composition within Lake Erie sediments. J Great Lakes Res 39(2):344–351

    Article  Google Scholar 

  38. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  39. Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:D294–D296

    Article  CAS  PubMed  Google Scholar 

  40. Garrity GM, Winters M, Kuo AW, Searles DB (2002) Taxonomic outline of the prokaryotes. Bergey’s manual of systematic bacteriology, 2nd edn. Springer, NY

    Google Scholar 

  41. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA: sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Felsentstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    Article  Google Scholar 

  44. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574

    Article  CAS  PubMed  Google Scholar 

  45. Librado P, Rozas J (2009) DNaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  46. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133(3):693–709

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  49. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3(5):418–426

    CAS  PubMed  Google Scholar 

  50. Pond SLK, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679

    Article  CAS  PubMed  Google Scholar 

  51. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71(12):8228–8235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hamady M, Lozupone L, Knight R (2010) Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4:17–27

    Article  CAS  PubMed  Google Scholar 

  53. Martin AP (2002) Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl Environ Microbiol 68(8):3673–3682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL repository and associated resources. Nucleic Acids Res 37(suppl 1):D387–D392

    Article  CAS  PubMed  Google Scholar 

  56. Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis Suppl 1:S162–S173

    Article  Google Scholar 

  57. Hemme CL, Deng Y, Gentry TJ, Fields MW, Wu L, Barua S, Barry K, Tringe SG, Watson DB, He Z, Hazen TC, Tiedje JM, Rubin EM, Zhou J (2010) Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community. ISME J 4:660–672

    Article  CAS  PubMed  Google Scholar 

  58. Judd KE, Crump BC, Kling GW (2006) Variation in dissolved organic matter controls bacterial production and community composition. Ecol 87(8):2068–2079

    Article  Google Scholar 

  59. Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007) Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 173:600–610

    Article  CAS  PubMed  Google Scholar 

  60. Chauhan A, Oakeshott JG, Jain RK (2008) Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation. Indian J Microbiol 48(1):95–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Julies EM, Fuchs BM, Arnosti C, Brüchert V (2010) Organic carbon degradation in anoxic organic-rich shelf sediments: biogeochemical rates and microbial abundance. Geomicrobiol J 27:303–314

    Article  CAS  Google Scholar 

  62. Møller AK, Søborg DA, Al-Soud WA, Sørensen SJ, Kroer N (2013) Bacterial community structure in High-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation. Polar Res 32:17390–17399

    Article  Google Scholar 

  63. Nold SC, Pangborn JB, Zajack HA, Kendall ST, Rediske RR, Biddanda BA (2010) Benthic bacterial diversity in submerged sinkhole ecosystems. Appl Environ Microbiol 76:347–351

    Article  CAS  PubMed  Google Scholar 

  64. Mueller-Spitz SR, Goetz GW, McLellan SL (2009) Temporal and spatial variability in nearshore bacterioplankton communities of Lake Michigan. FEMS Microbiol Ecol 67(3):511–522

    Article  CAS  PubMed  Google Scholar 

  65. Butcher BG, Deane SM, Rawlings DE (2000) The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl Environ Microbiol 66(5):1826–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Baillet F, Magnin JP, Cheruy A, Ozil P (1997) Cadmium tolerance and uptake by a Thiobacillus ferrooxidans biomass. Environ Technol 18(6):631–637

    Article  CAS  Google Scholar 

  67. Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–943

    Article  CAS  PubMed  Google Scholar 

  68. Cunningham DP, Lundie LL (1993) Precipitation of cadmium by Clostridium thernoaceticum. Appl Environ Microbiol 59(1):7–14

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Pan J, Ge X, Liu R, Tang H (2006) Characteristic features of Bacillus cereus cell surfaces with biosorption of Pb(II) ions by AFM and FT-IR. Colloids Surf B Interfaces 52(1):89–95

    Article  CAS  Google Scholar 

  70. Santmire JA, Leff LG (2007) The effect of sediment grain size on bacterial communities in streams. JNABS 26(4):601–610

    Article  Google Scholar 

  71. Pond SLK, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. In: Statistical methods in molecular evolution. Springer, New York, p 125–181

  72. Iwasaki T, Takeda H, Miyauchi K, Yamada T, Masai E, Fukuda M (2007) Characterization of two biphenyl dioxygenases for biphenyl/PCB degradation in a PCB degrader, Rhodococcus sp. strain RHA1. Biosci Biotechnol Biochem 71(4):993–1002

    Article  CAS  PubMed  Google Scholar 

  73. Mukerjee-Dhar G, Shimura M, Miyazawa D, Kimbara K, Hatta T (2005) bph genes of the thermophilic PCB degrader, Bacillus sp. JF8: characterization of the divergent ring-hydroxylating dioxygenase and hydrolase genes upstream of the Mn-dependent BphC. Microbiol 151:4139–4151

    Article  CAS  Google Scholar 

  74. Furusawa Y, Nagarajan V, Tanokura M, Masai E, Fukuda M, Senda T (2004) Crystal structure of the terminal oxygenase component of biphenyl dioxygenase derived from Rhodococcus sp. strain RHA1. J Mol Biol 342(3):1041–1052

    Article  CAS  PubMed  Google Scholar 

  75. Ohio Lake Erie Commission (2008) Lake Erie protection and restoration plan. Toledo, OH

  76. Chiarenzelli J, Scrudato R, Bush B, Carpenter D, Bushart S (1998) Do large-scale remedial and dredging events have the potential to release significant amounts of semivolatile compounds to the atmosphere? Environ Health Perspect 106:47–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fuentes S, Méndez V, Aguila P, Seeger M (2014) Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications. Appl Microbiol Biotechnol 98(11):4781–4794

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Editor and two anonymous reviewers for their constructive comments on an earlier version of the manuscript. We are grateful to the Duck and Otter Creeks Partnership, Inc. for counsel regarding the choice of sampling sites. This research was funded with a National Science Foundation (NSF) Doctoral Dissertation Improvement Grant (DDIG) to M.J.H. and J.L.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan L. Bouzat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 551 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoostal, M.J., Bouzat, J.L. Spatial Patterns of bphA Gene Diversity Reveal Local Adaptation of Microbial Communities to PCB and PAH Contaminants. Microb Ecol 72, 559–570 (2016). https://doi.org/10.1007/s00248-016-0812-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0812-y

Keywords

Navigation