Skip to main content

Advertisement

Log in

Fungi Sailing the Arctic Ocean: Speciose Communities in North Atlantic Driftwood as Revealed by High-Throughput Amplicon Sequencing

  • Fungal Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

High amounts of driftwood sail across the oceans and provide habitat for organisms tolerating the rough and saline environment. Fungi have adapted to the extremely cold and saline conditions which driftwood faces in the high north. For the first time, we applied high-throughput sequencing to fungi residing in driftwood to reveal their taxonomic richness, community composition, and ecology in the North Atlantic. Using pyrosequencing of ITS2 amplicons obtained from 49 marine logs, we found 807 fungal operational taxonomic units (OTUs) based on clustering at 97 % sequence similarity cut-off level. The phylum Ascomycota comprised 74 % of the OTUs and 20 % belonged to Basidiomycota. The richness of basidiomycetes decreased with prolonged submersion in the sea, supporting the general view of ascomycetes being more extremotolerant. However, more than one fourth of the fungal OTUs remained unassigned to any fungal class, emphasising the need for better DNA reference data from the marine habitat. Different fungal communities were detected in coniferous and deciduous logs. Our results highlight that driftwood hosts a considerably higher fungal diversity than currently known. The driftwood fungal community is not a terrestrial relic but a speciose assemblage of fungi adapted to the stressful marine environment and different kinds of wooden substrates found in it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Eriksson K-EL, Blanchette R, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Germany

    Book  Google Scholar 

  2. Häggblom A (1982) Driftwood in Svalbard as an indicator of sea ice conditions. Geogr Ann A 64(1–2):81–94. doi:10.2307/520496

    Article  Google Scholar 

  3. Johansen S, Hytteborn H (2001) A contribution to the discussion of biota dispersal with drift ice and driftwood in the North Atlantic. J Biogeogr 28(1):105–115. doi:10.1046/j.1365-2699.2001.00532.x

    Article  Google Scholar 

  4. Eggertsson Ó (1994) Driftwood as an indicator of relative changes in the influx of Arctic and Atlantic water into the coastal areas of Svalbard. Polar Res 13(2):209–218. doi:10.3402/polar.v13i2.6694

    Article  Google Scholar 

  5. Coûteaux M-M, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends Ecol Evol 10(2):63–66. doi:10.1016/S0169-5347(00)88978-8

    Article  PubMed  Google Scholar 

  6. Jennings DH (1983) Some aspects of the physiology and biochemistry of marine fungi. Biol Rev 58(3):423–459. doi:10.1111/j.1469-185X.1983.tb00395.x

    Article  CAS  Google Scholar 

  7. Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol 33:145–212. doi:10.1016/S0065-2911(08)60217-9

    Article  CAS  PubMed  Google Scholar 

  8. Johnson TW (1967) The estuarine mycoflora. In: Lauff GH (ed) Estuaries, vol. 83. American Association for the Advancement of Science Publication, Washington, DC, USA, pp 303–305

    Google Scholar 

  9. Shearer CA (1972) Fungi of the chesapeake bay and its tributaries. III. The distribution of wood-inhabiting Ascomycetes and Fungi Imperfecti of the Patuxent River. Am J Bot 59(9):961–969

    Article  Google Scholar 

  10. Barghoorn E, Linder D (1944) Marine fungi: their taxonomy and biology. Farlowia 1(3):395–467

    Google Scholar 

  11. Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic Press, New York, USA

    Google Scholar 

  12. Siepmann R, Johnson T (1960) Isolation and culture of fungi from wood submerged in saline and fresh waters. J Elisha Mitchell Sci Soc 76(1):150–154

    Google Scholar 

  13. Henningsson M (1974) Aquatic lignicolous fungi in the Baltic and along the west coast of Sweden. Svensk Bot Tidskr 68:401–425

    Google Scholar 

  14. Rämä T, Nordén J, Davey ML, Mathiassen GH, Spatafora JW, Kauserud H (2014) Fungi ahoy! Diversity on marine wooden substrata in the high North. Fungal Ecol 8:46–58. doi:10.1016/j.funeco.2013.12.002

    Article  Google Scholar 

  15. Jones EBG, Suetrong S, Sakayaroj J, Bahkali AH, Abdel-Wahab MA, Boekhout T, Pang K-L (2015) Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers 73(1):1–72. doi:10.1007/s13225-015-0339-4

    Article  Google Scholar 

  16. Jones EBG, Pang K-L (2012) Introduction marine fungi. In: Jones EBG, Pang K-L (eds) Marine fungi and fungal-like organisms. Walter de Gruyter, Berlin, Germany, pp 1–13. doi:10.1515/9783110264067.1

    Chapter  Google Scholar 

  17. Jones EBG (2000) Marine fungi: some factors influencing biodiversity. Fungal Divers 4:53–73

    Google Scholar 

  18. Pang K-L, Chow R, Chan C, Vrijmoed L (2011) Diversity and physiology of marine lignicolous fungi in Arctic waters: a preliminary account. Polar Res 30:5859–5863. doi:10.3402/polar.v30i0.5859

    Article  Google Scholar 

  19. Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high-throughput sequencing of amplified markers—a user's guide. New Phytol 199(1):288–299. doi:10.1111/nph.12243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ovaskainen O, Schigel D, Ali-Kovero H, Auvinen P, Paulin L, Nordén B, Nordén J (2013) Combining high-throughput sequencing with fruit body surveys reveals contrasting life-history strategies in fungi. ISME J 7(9):1696–1709. doi:10.1038/ismej.2013.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kubartová A, Ottosson E, Dahlberg A, Stenlid J (2012) Patterns of fungal communities among and within decaying logs, revealed by 454 sequencing. Mol Ecol 21(18):4514–4532. doi:10.1111/j.1365-294X.2012.05723.x

    Article  PubMed  Google Scholar 

  22. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2(2):113–118. doi:10.1111/j.1365-294X.1993.tb00005.x

    Article  CAS  PubMed  Google Scholar 

  23. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322. doi:10.1016/B978-0-12-372180-8.50042-1

    Google Scholar 

  24. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. doi:10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reeder J, Knight R (2010) Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. Nat Methods 7(9):668–669. doi:10.1038/nmeth0910-668b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461. doi:10.1093/bioinformatics/btq461

    Article  CAS  PubMed  Google Scholar 

  27. Carlsen T, Aas AB, Lindner D, Vrålstad T, Schumacher T, Kauserud H (2012) Don’t make a mista(g)ke: is tag switching an overlooked source of error in amplicon pyrosequencing studies? Fungal Ecol 5(6):747–749. doi:10.1016/j.funeco.2012.06.003

    Article  Google Scholar 

  28. Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20(4):217–263. doi:10.1007/s00572-009-0274-x

    Article  PubMed  Google Scholar 

  29. Quince C, Lanzen A, Davenport R, Turnbaugh P (2011) Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12:38. doi:10.1186/1471-2105-12-38

  30. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541. doi:10.1128/aem.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. WoRMS Editorial Board (2012) World register of marine species. www.marinespecies.org. Accessed 1 October 2012

  32. Whittaker RH (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecol Monogr 30(3):279–338. doi:10.2307/1943563

    Article  Google Scholar 

  33. Colwell RK, Chao A, Gotelli NJ, Lin S-Y, Mao CX, Chazdon RL, Longino JT (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol 5(1):3–21. doi:10.1093/jpe/rtr044

    Article  Google Scholar 

  34. Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples. Version 9.1.0. www.purl.oclc.org/estimates. Accessed 10 December 2013

  35. McCullagh P, Nelder JA (1989) Generalized linear models, vol 37. Chapmann & Hall, London, England

    Book  Google Scholar 

  36. Crawley M (2013) The R book, 2nd edn. John Wiley & Sons, Sussex, UK

    Google Scholar 

  37. Legendre P, Legendre L (2012) Numerical ecology. Developments in environmental modelling, vol 24, 3rd edn. doi:10.1016/B978-0-444-53868-0.50014-9

  38. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2013) Vegan: Community Ecology Package. Version 2.0-10 edn.,

  39. R Core Development Team (2014) R: a language and environment for statistical computing. Version 3.1.2 edn. R Foundation for Statistical Computing, Vienna, Austria

  40. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. W.H. Freeman, New York, USA

    Google Scholar 

  41. Runnel K, Tamm H, Lõhmus A (2015) Surveying wood-inhabiting fungi: most molecularly detected polypore species form fruit-bodies within short distances. Fungal Ecol 18:93–99. doi:10.1016/j.funeco.2015.08.008

    Article  Google Scholar 

  42. Jones EBG (2011) Fifty years of marine mycology. Fungal Divers 50(1):73–112. doi:10.1007/s13225-011-0119-8

    Article  Google Scholar 

  43. Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10(1):189

    Article  PubMed  PubMed Central  Google Scholar 

  44. Suetrong S, Jones EBG (2006) Marine discomycetes: a review. Ind J Mar Sci 35(4):291–296

    Google Scholar 

  45. Jones EBG (1994) Fungal adhesion. Mycol Res 98(9):961–981. doi:10.1016/S0953-7562(09)80421-8

    Article  Google Scholar 

  46. Nakagiri A, Ito T (1991) Basidiocarp development of the cyphelloid gasteroid aquatic basidiomycetes Halocyphina villosa and Limnoperdon incarnatum. Can J Botany 69(10):2320–2327. doi:10.1139/b91-292

    Article  Google Scholar 

  47. Hibbett DS, Binder M (2001) Evolution of marine mushrooms. Biol Bull 201(3):319–322. doi:10.2307/1543610

    Article  CAS  PubMed  Google Scholar 

  48. Mouzouras R, Jones EBG, Venkatasamy R, Moss ST (1987) Decay of wood by microorganisms in marine environments. Record of the 1986 Annual Convention of the British Wood Preserving Association. Cambridge, UK

  49. Jones EBG, Choeyklin R (2008) Ecology of marine and freshwater basidiomycetes. In: Boddy L, Frankland JC, van West P (eds) Ecology of saprotrophic basidiomycetes. Elsevier, Amsterdam, Netherlands, pp 301–324. doi:10.1016/S0275-0287(08)80018-5

    Chapter  Google Scholar 

  50. Duncan CG (1960) Wood-attacking capacities and physiology of soft-rot fungi. Report United States Forest Products Laboratory 2173

  51. Petersen KRL, Koch J (1997) Substrate preference and vertical zonation of lignicolous marine fungi on mooring posts of Oak (Quercus sp.) and larch (Larix sp.) in Svanemøllen Harbour, Denmark. Bot Mar 40(1-6):451–464. doi:10.1515/botm.1997.40.1-6.451

    Article  Google Scholar 

  52. Maria G, Sridhar K (2003) Diversity of filamentous fungi on woody litter of five mangrove plant species from the southwest coast of India. Fungal Divers 14:109–126

    Google Scholar 

  53. Nordén J, Penttilä R, Siitonen J, Tomppo E, Ovaskainen O (2013) Specialist species of wood-inhabiting fungi struggle while generalists thrive in fragmented boreal forests. J Ecol 101(3):701–712. doi:10.1111/1365-2745.12085

    Article  Google Scholar 

  54. Yamashita S, Masuya H, Abe S, Masaki T, Okabe K (2015) Relationship between the decomposition process of coarse woody debris and fungal community structure as detected by high-throughput sequencing in a deciduous broad-leaved forest in Japan. PLoS One 10(6), e0131510. doi:10.1371/journal.pone.0131510

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hyde K (1989) Ecology of tropical marine fungi. Hydrobiologia 178(3):199–208. doi:10.1007/BF00006027

    Article  Google Scholar 

  56. Byrne P, Jones GEB (1975) Effect of salinity on spore germination of terrestrial and marine fungi. Trans Br Mycol Soc 64(3):497–503. doi:10.1016/S0007-1536(75)80149-5

    Article  Google Scholar 

  57. Hyde KD, Farrant CA, Jones EBG (1987) Isolation and culture of marine fungi. Bot Mar 30(4):291–303

    Article  Google Scholar 

  58. Nakagiri A (2012) Culture collections and maintenance of marine fungi. In: Jones EBG, Pang K-L (eds) Marine fungi and fungal-like organisms. Walter de Gruyter, Berlin, pp 501–507. doi:10.1515/9783110264067.501

    Google Scholar 

  59. Hughes GC (1974) Geographical distribution of the higher marine fungi. Veroeff Inst Meeresforsch Bremerhav Suppl 5:419–441

    Google Scholar 

  60. Booth T, Kenkel N (1986) Ecological studies of lignicolous marine fungi: a distribution model based on ordination and classification. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, Cambridge, England, pp 297–310

    Google Scholar 

  61. Panebianco C (1994) Temperature requirements of selected marine fungi. Bot Mar 37(2):157–162. doi:10.1515/botm.1994.37.2.157

    Article  Google Scholar 

  62. Wassmann P, Svendsen H, Keck A, Reigstad M (1996) Selected aspects of the physical oceanography and particle fluxes in fjords of northern Norway. J Mar Syst 8(1):53–71. doi:10.1016/0924-7963(95)00037-2

    Article  Google Scholar 

  63. Elliott JSB (1930) The soil fungi of the Dovey salt marshes. Ann Appl Biol 17(2):284–305. doi:10.1111/j.1744-7348.1930.tb07215.x

    Article  Google Scholar 

  64. Alexander E, Stock A, Breiner H-W, Behnke A, Bunge J, Yakimov MM, Stoeck T (2009) Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Environ Microbiol 11(2):360–381. doi:10.1111/j.1462-2920.2008.01777.x

    Article  CAS  PubMed  Google Scholar 

  65. Edgcomb VP, Beaudoin D, Gast R, Biddle JF, Teske A (2011) Marine subsurface eukaryotes: the fungal majority. Environ Microbiol 13(1):172–183. doi:10.1111/j.1462-2920.2010.02318.x

    Article  CAS  PubMed  Google Scholar 

  66. Orsi W, Biddle JF, Edgcomb V (2013) Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. PLoS One 8(2), e56335. doi:10.1371/journal.pone.0056335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ramírez-Camejo LA, Zuluaga-Montero A, Lázaro-Escudero M, Hernández-Kendall V, Bayman P (2012) Phylogeography of the cosmopolitan fungus Aspergillus flavus: is everything everywhere? Fungal Biol 116(3):452–463. doi:10.1016/j.funbio.2012.01.006

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The Norwegian marine biobank, Marbank, provided logistic support and University of Tromsø the Arctic University of Norway and University of Oslo financial support. Rahman Mankettikkara kindly provided temperature and salinity data, Michael Greenacre statistical advice. Analyses were partly run on the Lifeportal and the Abel Cluster (http://www.uio.no/english/services/it/research/hpc/) at the University of Oslo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teppo Rämä.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

Occurrence of the 50 most frequent OTUs in the 44 logs included in the community analysis (PDF 453 kb)

Table S1

Explanatory variables recorded for the driftwood logs, their explanation and statistical properties (PDF 195 kb)

Table S2

Measured values of explanatory variables for the 44 logs included in the community analyses (XLSX 18 kb)

Table S3

OTU matrix used in the community analyses (XLSX 81 kb)

Table S4

OTU identities (XLSX 138 kb)

Table S5

Generalised linear modelling (GLM) analyses of fungal group richness in driftwood logs (PDF 281 kb)

Table S6

Relationships between global nonmetric multidimensional scaling (GNMDS) ordination axes for fungal communities in 44 driftwood logs and explanatory variables (DOCX 16 kb)

Appendix S1

Supplementary methods (DOCX 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rämä, T., Davey, M.L., Nordén, J. et al. Fungi Sailing the Arctic Ocean: Speciose Communities in North Atlantic Driftwood as Revealed by High-Throughput Amplicon Sequencing. Microb Ecol 72, 295–304 (2016). https://doi.org/10.1007/s00248-016-0778-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0778-9

Keywords

Navigation