Skip to main content

Advertisement

Log in

Water Sources in a Zoological Park Harbor Genetically Diverse Strains of Clostridium Perfringens Type A with Decreased Susceptibility to Metronidazole

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The presence of Clostridium perfringens in water is generally regarded as an indicator of fecal contamination, and exposure to waterborne spores is considered a possible source of infection for animals. We assessed the presence and genetic diversity of C. perfringens in water sources in a zoological park located in Madrid (Spain). A total of 48 water samples from 24 different sources were analyzed, and recovered isolates were toxinotyped, genotyped by fluorophore-enhanced repetitive polymerase chain reaction (rep-PCR) fingerprinting and tested for antimicrobial susceptibility. C. perfringens was recovered from 43.8 % of water samples and 50 % of water sources analyzed. All isolates (n = 70) were type A and 42.9 % were β2-toxigenic (i.e., cpb2+), but none contained the enterotoxin-encoding gene (cpe). Isolates belonged to 15 rep-PCR genotypes and most genetic diversity (88 %) was distributed among isolates obtained from the same sample. Most isolates displayed intermediate susceptibility (57.1 %; MIC = 16 μg ml−1) or resistance (5.7 %; MIC ≥ 32 μg ml−1) to metronidazole. No resistance to other antimicrobials was detected, although some isolates showed elevated MICs to erythromycin and/or linezolid. Finally, a marginally significant association between absence of cpb2 and decreased susceptibility to metronidazole (MIC ≥ 16 μg ml−1) was detected. In conclusion, our results reveal a high prevalence of C. perfringens type A in the studied water reservoirs, which constitutes a health risk for zoo animals. The elevated MICs to metronidazole observed for genetically diverse isolates is a cause of additional concern, but more work is required to clarify the significance of reduced metronidazole susceptibility in environmental strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Silva RO, Lobato FC (2015) Clostridium perfringens: a review of enteric diseases in dogs, cats and wild animals. Anaerobe 33:14–17

    Article  PubMed  Google Scholar 

  2. Uzal FA, Freedman JC, Shrestha A, Theoret JR, Garcia J, Awad MM, Adams V, Moore RJ, Rood JI, McClane BA (2014) Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiol 9:361–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Deprez P (2015) Clostridium perfringens infections—a diagnostic challenge. Vet Rec 177:388–389

    Article  PubMed  Google Scholar 

  4. Songer JG, Uzal FA (2005) Clostridial enteric infections in pigs. J Vet Diagn Invest 17:528–536

    Article  PubMed  Google Scholar 

  5. Uzal FA, Songer JG (2008) Diagnosis of Clostridium perfringens intestinal infections in sheep and goats. J Vet Diagn Invest 20:253–265

    Article  PubMed  Google Scholar 

  6. Buck JD, Shepard LL, Spotte S (1987) Clostridium perfringens as the cause of death of a captive Atlantic bottlenosed dolphin (Tursiops truncatus). J Wildl Dis 23:488–491

    Article  CAS  PubMed  Google Scholar 

  7. de Carvalho MA, Santos PS, Nogueira SS, Lessa F, Almeida Vdos A, Leça-Júnior NF, Salvarani FM, Lobato FC, Nogueira-Filho SL (2011) Necrotic enteritis in collared (Pecari tajacu) and white-lipped (Tayassu pecari) peccaries. J Zoo Wildl Med 42:732–734

    Article  PubMed  Google Scholar 

  8. Greco G, Madio A, Martella V, Campolo M, Corrente M, Buonavoglia D, Buonavoglia C (2005) Enterotoxemia associated with beta2 toxin–producing Clostridium perfringens type A in two Asiatic black bears (Selenarctos thibetanus). J Vet Diagn Invest 17:186–189

    Article  PubMed  Google Scholar 

  9. Silva RO, D’Elia ML, Tostes Teixeira EP, Pereira PL, de Magalhães Soares DF, Cavalcanti ÁR, Kocuvan A, Rupnik M, Santos AL, Junior CA, Lobato FC (2014) Clostridium difficile and Clostridium perfringens from wild carnivore species in Brazil. Anaerobe 28:207–211

    Article  PubMed  Google Scholar 

  10. Zhang Y, Hou Z, Ma J (2012) Hemorrhagic enterocolitis and death in two felines (Panthera tigris altaica and Panthera leo) associated with Clostridium perfringens type A. J Zoo Wildl Med 43:394–396

    Article  CAS  PubMed  Google Scholar 

  11. American Academy of Veterinary Pharmacology and Therapeutics (AAVPT) (2012) Veterinary clinical drug information monographs. http://www.aavpt.org/associations/12658/files/metronidazole.pdf. Accessed 8 February 2016.

  12. Dhand A, Snydman DR (2009) Mechanism of resistance in metronidazole. In: Mayers DL (ed) Antimicrobial drug resistance, vol 1, Mechanisms of drug resistance. Humana Press, New York, pp 223–227

    Chapter  Google Scholar 

  13. Löfmark S, Edlund C, Nord CE (2010) Metronidazole is still the drug of choice for treatment of anaerobic infections. Clin Infect Dis 50(suppl1):S16–S23

  14. Husain F, Veeranagouda Y, Hsi J, Meggersee R, Abratt V, Wexler HM (2013) Two multidrug-resistant clinical isolates of Bacteroides fragilis carry a novel metronidazole resistance nim gene (nimJ). Antimicrob Agents Chemother 57:3767–3774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sadarangani SP, Cunningham SA, Jeraldo PR, Wilson JW, Khare R, Patel R (2015) Metronidazole- and carbapenem-resistant Bacteroides thetaiotaomicron isolated in Rochester, Minnesota, in 2014. Antimicrob Agents Chemother 59:4157–4161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Álvarez-Pérez S, Blanco JL, Martínez-Nevado E, Peláez T, Harmanus C, Kuijper E, García ME (2014) Shedding of Clostridium difficile PCR ribotype 078 by zoo animals, and report of an unstable metronidazole-resistant isolate from a zebra foal (Equus quagga burchellii). Vet Microbiol 169:218–222

    Article  PubMed  Google Scholar 

  17. Jang SS, Hansen LM, Breher JE, Riley DA, Magdesian KG, Madigan JE, Tang YJ, Silva J Jr, Hirsh DC (1997) Antimicrobial susceptibilities of equine isolates of Clostridium difficile and molecular characterization of metronidazole-resistant strains. Clin Infect Dis 25(suppl2):S266–S267

  18. Camacho N, Espinoza C, Rodríguez C, Rodríguez E (2008) Isolates of Clostridium perfringens recovered from Costa Rican patients with antibiotic-associated diarrhoea are mostly enterotoxin-negative and susceptible to first-choice antimicrobials. J Med Microbiol 57:343–347

    Article  CAS  PubMed  Google Scholar 

  19. Lawhon SD, Taylor A, Fajt VR (2013) Frequency of resistance in obligate anaerobic bacteria isolated from dogs, cats, and horses to antimicrobial agents. J Clin Microbiol 51:3804–3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marchand-Austin A, Rawte P, Toye B, Jamieson FB, Farrell DJ, Patel SN (2014) Antimicrobial susceptibility of clinical isolates of anaerobic bacteria in Ontario, 2010–2011. Anaerobe 28:120–125

    Article  CAS  PubMed  Google Scholar 

  21. Roberts SA, Shore KP, Paviour SD, Holland D, Morris AJ (2006) Antimicrobial susceptibility of anaerobic bacteria in New Zealand: 1999–2003. J Antimicrob Chemother 57:992–998

    Article  CAS  PubMed  Google Scholar 

  22. Slavić D, Boerlin P, Fabri M, Klotins KC, Zoethout JK, Weir PE, Bateman D (2011) Antimicrobial susceptibility of Clostridium perfringens isolates of bovine, chicken, porcine, and turkey origin from Ontario. Can J Vet Res 75:89–97

    PubMed  PubMed Central  Google Scholar 

  23. Tansuphasiri U, Matra W, Sangsuk L (2005) Antimicrobial resistance among Clostridium perfringens isolated from various sources in Thailand. Southeast Asian J Trop Med Public Health 36:954–961

    CAS  PubMed  Google Scholar 

  24. Wybo I, Van den Bossche D, Soetens O, Vekens E, Vandoorslaer K, Claeys G, Glupczynski Y, Ieven M, Melin P, Nonhoff C, Rodriguez-Villalobos H, Verhaegen J, Piérard D (2014) Fourth Belgian multicentre survey of antibiotic susceptibility of anaerobic bacteria. J Antimicrob Chemother 69:155–161

    Article  CAS  PubMed  Google Scholar 

  25. Voidarou C, Bezirtzoglou E, Alexopoulos A, Plessas S, Stefanis C, Papadopoulos I, Vavias S, Stavropoulou E, Fotou K, Tzora A, Skoufos I (2011) Occurrence of Clostridium perfringens from different cultivated soils. Anaerobe 17:320–324

    Article  CAS  PubMed  Google Scholar 

  26. Nagy E, Schuetz A (2015) Is there a need for the antibiotic susceptibility testing of anaerobic bacteria? Anaerobe 31:2–3

    Article  PubMed  Google Scholar 

  27. Florence LCH, Hakim SL, Kamaluddin MA, Thong KL (2011) Determination of toxinotypes of environmental Clostridium perfringens by Polymerase Chain Reaction. Trop Biomed 28:171–174

    CAS  Google Scholar 

  28. Mueller-Spitz SR, Stewart LB, Klump JV, McLellan SL (2010) Freshwater suspended sediments and sewage are reservoirs for enterotoxin-positive Clostridium perfringens. Appl Environ Microbiol 76:5556–5562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vierheilig J, Frick C, Mayer RE, Kirschner AK, Reischer GH, Derx J, Mach RL, Sommer R, Farnleitner AH (2013) Clostridium perfringens is not suitable for the indication of fecal pollution from ruminant wildlife but is associated with excreta from nonherbivorous animals and human sewage. Appl Environ Microbiol 79:5089–5092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. World Health Organization (WHO) (2011) Guidelines for drinking-water quality, 4th edn. WHO Press, Geneva

    Google Scholar 

  31. Anza I, Vidal D, Laguna C, Díaz-Sánchez S, Sánchez S, Chicote A, Florín M, Mateo R (2014) Eutrophication and bacterial pathogens as risk factors for avian botulism outbreaks in wetlands receiving effluents from urban wastewater treatment plants. Appl Environ Microbiol 80:4251–4259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baums CG, Schotte U, Amtsberg G, Goethe R (2004) Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates. Vet Microbiol 100:11–16

    Article  CAS  PubMed  Google Scholar 

  33. Álvarez-Pérez S, Mateos A, Domínguez L, Martínez-Nevado E, Blanco JL, García ME (2010) Polyclonal Aspergillus fumigatus infection in captive penguins. Vet Microbiol 144:444–449

    Article  PubMed  Google Scholar 

  34. Versalovic J, Kapur V, Koeuth T, Mazurek GH, Whittam TS, Musser JM, Lupski JR (1995) DNA fingerprinting of pathogenic bacteria by fluorophore-enhanced repetitive sequence-based polymerase chain reaction. Arch Pathol Lab Med 119:23–29

    CAS  PubMed  Google Scholar 

  35. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(issue 1, art. 4):9

    Google Scholar 

  36. Clinical and Laboratory Standards Institute (CLSI) (2012) Methods for antimicrobial susceptibility testing of anaerobic bacteria, 8th edn. CLSI M11-A8. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  37. Álvarez-Pérez S, Blanco JL, Peláez T, Lanzarot MP, Harmanus C, Kuijper E, García ME (2015) Faecal shedding of antimicrobial-resistant Clostridium difficile strains by dogs. J Small Anim Pract 56:190–195

    Article  PubMed  Google Scholar 

  38. Peláez T, Alcalá L, Blanco JL, Álvarez-Pérez S, Marín M, Martín-López A, Catalán P, Reigadas E, García ME, Bouza E (2013) Characterization of swine isolates of Clostridium difficile in Spain: a potential source of epidemic multidrug resistant strains? Anaerobe 22:45–49

    Article  PubMed  Google Scholar 

  39. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 8 February 2016.

  42. Dréan P, McAuley CM, Moore SC, Fegan N, Fox EM (2015) Characterization of the spore-forming Bacillus cereus sensu lato group and Clostridium perfringens bacteria isolated from the Australian dairy farm environment. BMC Microbiol 15:38

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lee FC, Hakim SL, Kamaluddin MA, Thong KL (2012) Clostridium perfringens and sulphite reducing clostridia densities in selected tropical Malaysian rivers. Southeast Asian J Trop Med Public Health 43:129–135

    PubMed  Google Scholar 

  44. Neuhaus J, Shehata AA, Krüger M (2015) Detection of pathogenic clostridia in biogas plant wastes. Folia Microbiol 60:15–19

    Article  CAS  Google Scholar 

  45. Vijayavel K, Kashian DR (2014) Evaluation of Clostridium perfringens as a tracer of sewage contamination in sediments by two enumeration methods. Environ Monit Assess 186:5617–5624

    Article  CAS  PubMed  Google Scholar 

  46. Engström BE, Johansson A, Aspan A, Kaldhusdal M (2012) Genetic relatedness and netB prevalence among environmental Clostridium perfringens strains associated with a broiler flock affected by mild necrotic enteritis. Vet Microbiol 159:260–264

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by project grant AGL2013-46116-R from the Spanish Ministry of Economy and Competitiveness. Sergio Álvarez-Pérez acknowledges a ‘Juan de la Cierva’ postdoctoral contract [JCI-2012-12396]. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. The constructive comments from two anonymous reviewers are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Blanco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Detailed characteristics of the Clostridium perfringens isolates characterized in this study. (DOC 195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez-Pérez, S., Blanco, J.L., Peláez, T. et al. Water Sources in a Zoological Park Harbor Genetically Diverse Strains of Clostridium Perfringens Type A with Decreased Susceptibility to Metronidazole. Microb Ecol 72, 783–790 (2016). https://doi.org/10.1007/s00248-016-0772-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0772-2

Keywords

Navigation