Skip to main content

Advertisement

Log in

Phylogenetic Diversity of Ammopiptanthus Rhizobia and Distribution of Rhizobia Associated with Ammopiptanthus mongolicus in Diverse Regions of Northwest China

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Aiming to investigate the diversity and distribution of rhizobia associated with Ammopiptanthus, an endangered evergreen legume widely distributed in deserts, we characterized a total of 219 nodule isolates from nine sampling sites in Northwest China with different soil characteristics based upon restriction fragment length polymorphism (RFLP) analysis of 16S ribosomal RNA (rRNA) and symbiotic genes (nodC and nifH). Ten isolates representing different 16S rRNA-RFLP types were selected for further sequence analyses of 16S rRNA and four housekeeping genes. As results, nine genospecies belonging to the genera Ensifer, Neorhizobium, Agrobacterium, Pararhizobium, and Rhizobium could be defined among the isolates. The nodC and nifH phylogenies of 14 isolates representing different symbiotic-RFLP types revealed five lineages linked to Ensifer fredii, Ensifer meliloti, Rhizobium leguminosarum, Mesorhizobium amorphae, and Rhizobium gallicum, which demonstrated the various origins and lateral transfers of symbiotic genes between different genera and species. The rhizobial diversities of Ammopiptanthus mongolicus varied among regions, and the community compositions of rhizobia associated with A. mongolicus were significantly different in wild and cultured fields. Constrained correspondence analysis showed that the distribution of A. mongolicus rhizobia could be explained by available potassium content and that the assembly of symbiotic types was mainly affected by available phosphorus content and carbon–nitrogen ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Liu JQ, Qiu XM, Yang K, Shi QH (1995) Studies on the plant community of Ammopiptanthus mongolicus. J Desert Res 15:109–115 (in Chinese with English abstract)

    CAS  Google Scholar 

  2. Ge XJ, Yu Y, Yuan YM, Huang HW, Yan C (2005) Genetic diversity and geographic differentiation in endangered Ammopiptanthus (Leguminosae) populations in desert regions of northwest China as revealed by ISSR analysis. Ann Bot 95:843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu GH (1998) Study on the endangered reasons of Ammopiptanthus mongolicus in the desert of Alashan. Bull Bot Res 18:341–345

    CAS  Google Scholar 

  4. Cheng SH (1959) Ammopiptanthus Cheng f., a new genus of Leguminosae from Central Asia. J Bot USSR 44:1381–1386

    Google Scholar 

  5. Xu S, An L, Feng H, Wang X, Li X (2002) The seasonal effects of water stress on Ammopiptanthus mongolicus in a desert environment. J Arid Environ 51:437–447

    Article  Google Scholar 

  6. Pang T, Ye CY, Xia XL, Yin WL (2013) De novo sequencing and transcriptome analysis of the desert shrub, Ammopiptanthus mongolicus, during cold acclimation using Illumina/Solexa. BMC Genomics 14:488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sprent JI (2009) Legume nodulation, a global respective. p 117. Willey-Blackwell, Singapore. http://books.google.com.hk/books?isbn=1444316397

  8. He H, Wang H, Jia G (2012) Nodule histology and ultrastructure of Ammopiptanthus mongolicus and subcellular localization of glycoprotein in nodules. Sci Silvae Sin 48:31–38 (in Chinese with English abstract)

    CAS  Google Scholar 

  9. Bi JT, He DH, Chen WM, Xie RM, Wei GH (2009) Analysis of genetic diversity and phylogenesis of rhizobia from Ammopiptanthus mongolicus. Acta Botan Boreali-Occiden Sin 29:695–703 (in Chinese with English abstract)

    CAS  Google Scholar 

  10. Bi J, He D, Xie R, Wei G (2009) PCR-RFLP analysis of nodulation gene nodA of rhizobia from Ammopiptanthus mongolicus. J Desert Res 29:703–710 (in Chinese with English abstract)

    Google Scholar 

  11. Bi J, He D, Xie R, Wei X, Wei G (2009) PCR-RFLP analysis of nitrogenase gene nifH of rhizobia from Ammopiptanthus mongolicus. Acta Agric Bor-Accid Sin 18:315–321 (in Chinese with English abstract)

    Google Scholar 

  12. Han LL, Wang ET, Han TX, Liu J, Sui XH, Chen WF, Chen WX (2009) Unique community structure and biogeography of soybean rhizobia in the saline–alkaline soils of Xinjiang, China. Plant Soil 324:291–305

    Article  CAS  Google Scholar 

  13. Li L, Hanna S, Leone M, Wei GH, Lindström K, Räsänen LA (2011) Biogeography of symbiotic and other endophytic bacteria isolated from medicinal Glycyrrhiza species in China. FEMS Microbial Ecol 79:46–68

    Article  Google Scholar 

  14. Li QQ, Wang ET, Zhang YZ, Zhang YM, Tian CF, Sui XH et al (2011) Diversity and biogeography of rhizobia isolated from root nodules of Glycine max grown in Hebei province of China. Microbial Ecol 61:917–931

    Article  Google Scholar 

  15. Zhao L, Fan MC, Zhang DH, Yang RP, Zhang FL, Xu L et al (2014) Distribution and diversity of rhizobia associated with wild soybean (Glycine soja Sieb. & Zucc.) in Northwest China. Syst Appl Microbiol 37:449–456

    Article  PubMed  Google Scholar 

  16. Zhao LF, Deng ZS, Yang WQ, Cao Y, Wang ET, Wei GH (2010) Diverse rhizobia associated with Sophora alopecuroides grown in different regions of Loess Plateau in China. Syst Appl Microbiol 33:468–477

    Article  CAS  PubMed  Google Scholar 

  17. Zhang YM, Li Y, Chen WF, Wang ET, Tian CF, Li QQ, Zhang YZ, Sui XH, Chen WX (2011) Biodiversity and biogeography of rhizobia associated with soybean plants grown in the North China Plain. Appl Environ Microbiol 77:6331–6342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vincent JM (1970) A manual for the practical study of root-nodule bacteria. IBP handbook no. 15. International Biological Programme, London

  19. Afnor (2005) Soil quality, determination of pH. NF ISO 10390. AFNOR, Paris, France

  20. Houba VJG, Novozamsky I, Huybregts AWM, Van der Lee J (1986) Comparison of soil extractions by 0.01M CaCl2, by EUF and by some conventional extraction procedures. Plant Soil 96:433–437

    Article  CAS  Google Scholar 

  21. Olsen SR (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA, Washington, DC

    Google Scholar 

  22. Simonis AD (1996) Effect of temperature on extraction of phosphorus and potassium from soils by various extracting solutions. Commun Soil Sci Plant Anal 27:665–684

    Article  CAS  Google Scholar 

  23. Cao Y, Wang ET, Zhao L, Chen WM, Wei GH (2014) Diversity and distribution of rhizobia nodulated with Phaseolus vulgaris in two regions of China. Soil Biol Biochem 78:128–137

    Article  CAS  Google Scholar 

  24. Tan ZY, Xu XD, Wang ET, Gao JL, Martinez-Romero E, Chen WX (1997) Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia. Int J Syst Evol Microbiol 47:874–879

    CAS  Google Scholar 

  25. Pinto FGS, Hungria M, Mercante FM (2007) Polyphasic characterization of Brazilian Rhizobium tropici strains effective in fixing N2 with common bean (Phaseolus vulgaris L.). Soil Biol Biochem 39:1851–1864

    Article  CAS  Google Scholar 

  26. Yang WQ, Kong ZY, Chen WM, Wei GH (2013) Genetic diversity and symbiotic evolution of rhizobia from root nodules of Coronilla varia. Syst Appl Microbiol 36:49–55

    Article  CAS  PubMed  Google Scholar 

  27. Martens M, Dawyndt P, Coopman R, Gillis M, De Vos P, Willems A (2007) Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol 57:489–503

    Article  CAS  PubMed  Google Scholar 

  28. Martens M, Dawyndt P, Coopman R, Gillis M, De Vos P, Willems A (2008) Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 58:200–214

    Article  CAS  PubMed  Google Scholar 

  29. Mousavi SA, Osterman J, Wahlberg N, Nesme X, Lavire C, Vial L et al (2014) Phylogeny of the RhizobiumAllorhizobiumAgrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 37:208–215

    Article  CAS  PubMed  Google Scholar 

  30. Vinuesa P, Silva C, Lorite MJ, Izaguirre-Mayoral ML, Bedmar EJ, Martinez-Romero E (2005) Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28:702–716

    Article  CAS  PubMed  Google Scholar 

  31. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grant T, Kluge AG (2003) Data exploration in phylogenetic inference: scientific, heuristic, or neither. Cladistics Int J Willi Hennig Soc 19:379–418

    Article  Google Scholar 

  33. Xia XH (2009) Assessing substitution saturation with DAMBE. In: Lemey P, Salemi M, Vandamme AM (eds) The phylogenetic handbook. Cambridge University Press, Cambridge, pp 615–630

    Chapter  Google Scholar 

  34. Xia XH (2013) DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 30:1720–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  36. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  37. Swofford D (2002) PAUP*: phylogenetic analysis using parsimony and other methods. Version 4. Sinauer Associates, Sunderland, MA

    Google Scholar 

  38. Huelsenbeck JP, Ronquist FR (2011) MrBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  Google Scholar 

  39. Ronquist FR, Huelsenbeck JP (2003) MrBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  40. Guindon S, Gascuel O (2003) PhyML: a simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  41. Farris JS, Källersjö M, Kluge AG, Bult C (1994) Testing significance of incongruence. Cladistics Int J Willi Hennig Soc 10:315–319

    Article  Google Scholar 

  42. Farris JS, Källersjö M, Kluge AG, Bult C (1995) Constructing a significance test for incongruence. Syst Biol 44:570–572

    Article  Google Scholar 

  43. Legendre P, Legendre L (1998) Numerical ecology, 2nd English edn. Elsevier Science BV, Amsterdam

    Google Scholar 

  44. ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179

    Article  Google Scholar 

  45. Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K (2015) Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 38:84–90

    Article  PubMed  Google Scholar 

  46. Berkum PV, Terefework Z, Paulin L, Suomalainen S, Lindström K, Eardly BD (2003) Discordant phylogenies within the rrn loci of rhizobia. J Bacteriol 185:2988–2998

    Article  PubMed  PubMed Central  Google Scholar 

  47. Eardly BD, Nour SA, van Berkum P, Selander RK (2005) Rhizobial 16S rRNA and dnaK genes: mosaicism and the uncertain phylogenetic placement of Rhizobium galegae. Appl Environ Microbiol 71:1328–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Silva C, Vinuesa P, Eguiarte LE, Souza V, Martinez-Romero E (2005) Evolutionary genetics and biogeographic structure of Rhizobium gallicum sensu lato, a widely distributed bacterial symbiont of diverse legumes. Mol Ecol 14:4033–4050

    Article  CAS  PubMed  Google Scholar 

  49. Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology UK 147:981–993

    Article  CAS  Google Scholar 

  50. Sullivan JT, Ronson CW (1998) Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci U S A 95:5145–5149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sullivan JT, Patrick HN, Lowther WL, Scott DB, Ronson CW (1995) Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci U S A 92:8985–8989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM et al (2002) Comparative sequence analysis of the symbiosis island of Mesorhizobium lotis strain R7A. J Bacteriol 184:3086–3095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S et al (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197

    Article  PubMed  Google Scholar 

  54. Lindström K (1989) Rhizobium galegae, a new species of legume root nodule bacteria. Int J Syst Bacteriol 39:365–367

    Article  Google Scholar 

  55. Radeva G, Jürgens G, Niemi M, Nick G, Suominen L, Lindström K (2001) Description of two biovars in the Rhizobium galegae species: biovar orientalis and biovar officinalis. Syst Appl Microbiol 24:192–205

    Article  CAS  PubMed  Google Scholar 

  56. Bailly X, Olivieri I, Brunel B, Cleyet-Marel JC, Béna G (2007) Horizontal gene transfer and homologous recombination drive the evolution of the nitrogen-fixing symbionts of Medicago species. J Bacteriol 189:5223–5236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marchetti M, Capela D, Glew M, Cruveiller S, Chane-Woon-Ming B, Gris C et al (2010) Experimental evolution of a plant pathogen into a legume symbiont. PLoS Biol 8:1–10

    Article  Google Scholar 

  58. Fernández-Calviño D, Baath E (2010) Growth response of the bacterial community to pH in soils differing in pH. FEMS Microbiol Ecol 73:149–156

    PubMed  Google Scholar 

  59. Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG et al (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  60. Appunu C, N’Zoue A, Laguerre G (2008) Genetic diversity of native bradyrhizobia isolated from soybeans (Glycine max L.) in different agricultural–ecological–climatic regions of India. Appl Environ Microbiol 74:5991–5996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bonilla I, Bolãnos L (2009) Mineral nutrition for legume–rhizobia symbiosis: B, Ca, N, P, S, K, Fe, Mo, Co, and Ni: a review. Sustainable agriculture reviews. Org Farm Pest Control Remediat Soil Pollut 1:253–274

    Article  Google Scholar 

Download references

Acknowledgments

We thank Zhengshan Liu and Peng Zhao for helping in nodule collection. This work was supported by project from the National Science Foundation of China (31125007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gehong Wei.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1570 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Wang, X., Huo, H. et al. Phylogenetic Diversity of Ammopiptanthus Rhizobia and Distribution of Rhizobia Associated with Ammopiptanthus mongolicus in Diverse Regions of Northwest China. Microb Ecol 72, 231–239 (2016). https://doi.org/10.1007/s00248-016-0759-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0759-z

Keywords

Navigation