Skip to main content

Advertisement

Log in

Bacterial Diversity and Community Structure in Two Bornean Nepenthes Species with Differences in Nitrogen Acquisition Strategies

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Carnivorous plants of the genus Nepenthes have been studied for over a century, but surprisingly little is known about associations with microorganisms. The two species Nepenthes rafflesiana and Nepenthes hemsleyana differ in their pitcher-mediated nutrient sources, sequestering nitrogen from arthropod prey and arthropods as well as bat faeces, respectively. We expected bacterial communities living in the pitchers to resemble this diet difference. Samples were taken from different parts of the pitchers (leaf, peristome, inside, outside, digestive fluid) of both species. Bacterial communities were determined using culture-independent high-throughput amplicon sequencing. Bacterial richness and community structure were similar in leaves, peristomes, inside and outside walls of both plant species. Regarding digestive fluids, bacterial richness was higher in N. hemsleyana than in N. rafflesiana. Additionally, digestive fluid communities were highly variable in structure, with strain-specific differences in community composition between replicates. Acidophilic taxa were mostly of low abundance, except the genus Acidocella, which strikingly reached extremely high levels in two N. rafflesiana fluids. In N. hemsleyana fluid, some taxa classified as vertebrate gut symbionts as well as saprophytes were enriched compared to N. rafflesiana, with saprophytes constituting potential competitors for nutrients. The high variation in community structure might be caused by a number of biotic and abiotic factors. Nitrogen-fixing bacteria were present in both study species, which might provide essential nutrients to the plant at times of low prey capture and/or rare encounters with bats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Juniper BE, Robins RJ, Joel D (1989) The carnivorous plants. Academic Press, London

    Google Scholar 

  2. Clarke MC (1997) Nepenthes of Borneo. Nat. Hist. Publ

  3. Clarke MC (2001) Nepenthes of Sumatra and Peninsular Malaysia. Nat. Hist. Publ

  4. Schulze W, Frommer WB, Ward JM (1999) Transporters for ammonium, amino acids and peptides are expressed in pitchers of the carnivorous plant Nepenthes. Plant J 17:637–646

    Article  CAS  PubMed  Google Scholar 

  5. Gaume L, Forterre Y (2007) A viscoelastic deadly fluid in carnivorous pitcher plants. PLoS One 2:e1185. doi:10.1371/journal.pone.0001185

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gaume L, Gorb S, Rowe N (2002) Function of epidermal surfaces in the trapping efficiency of Nepenthes alata pitchers. New Phytol 156:479–489. doi:10.1046/j.1469-8137.2002.00530.x

    Article  Google Scholar 

  7. Riedel M, Eichner A, Jetter R (2003) Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers. Planta 218:87–97. doi:10.1007/s00425-003-1075-7

    Article  CAS  PubMed  Google Scholar 

  8. Riedel M, Eichner A, Meimberg H, Jetter R (2007) Chemical composition of epicuticular wax crystals on the slippery zone in pitchers of five Nepenthes species and hybrids. Planta 225:1517–1534. doi:10.1007/s00425-006-0437-3

    Article  CAS  PubMed  Google Scholar 

  9. Pavlovič A, Masarovičová E, Hudák J (2007) Carnivorous syndrome in Asian pitcher plants of the genus Nepenthes. Ann Bot 100:527–536

    Article  PubMed  PubMed Central  Google Scholar 

  10. Moran JA, Clarke CM (2010) The carnivorous syndrome in Nepenthes pitcher plants. Current state of knowledge and potential future directions. Plant Signal Behav 5:644–648

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gaume L, Perret P, Gorb E et al (2004) How do plant waxes cause flies to slide? Experimental tests of wax-based trapping mechanisms in three pitfall carnivorous plants. Arthropod Struct Dev 33:103–111. doi:10.1016/j.asd.2003.11.005

    Article  CAS  PubMed  Google Scholar 

  12. Bonhomme V, Pelloux-Prayer H, Jousselin E et al (2011) Slippery or sticky? Functional diversity in the trapping strategy of Nepenthes carnivorous plants. New Phytol 191:545–554

    Article  PubMed  Google Scholar 

  13. Higashi S, Nakashima A, Ozaki H et al (1993) Analysis of feeding mechanism in a pitcher of Nepenthes hybrida. J Plant Res 106:47–54

    Article  Google Scholar 

  14. An C-I, Fukusaki E, Kobayashi A (2001) Plasma-membrane H + -ATPases are expressed in pitchers of the carnivorous plant Nepenthes alata Blanco. Planta 212:547–555

    Article  CAS  PubMed  Google Scholar 

  15. An C-I, Fukusaki E, Kobayashi A (2002) Aspartic proteinases are expressed in pitchers of the carnivorous plant Nepenthes alata Blanco. Planta 214:661–667. doi:10.1007/s004250100665

    Article  CAS  PubMed  Google Scholar 

  16. Bauer U, Willmes C, Federle W (2009) Effect of pitcher age on trapping efficiency and natural prey capture in carnivorous Nepenthes rafflesiana plants. Ann Bot 103:1219–1226. doi:10.1093/aob/mcp065

    Article  PubMed  PubMed Central  Google Scholar 

  17. Grafe TU, Schöner CR, Kerth G et al (2011) A novel resource-service mutualism between bats and pitcher plants. Biol Lett 7:436–439. doi:10.1098/rsbl.2010.1141

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schöner CR, Schöner MG, Kerth G, Grafe TU (2013) Supply determines demand: influence of partner quality and quantity on the interactions between bats and pitcher plants. Oecologia 173:191–202. doi:10.1007/s00442-013-2615-x

    Article  PubMed  Google Scholar 

  19. Clarke C, Moran JA, Lee CC (2011) Nepenthes baramensis (Nepenthaceae)—a new species from north-western Borneo. Blumea 56:229–233

    Article  Google Scholar 

  20. Scharmann M, Grafe TU (2013) Reinstatement of Nepenthes hemsleyana (Nepenthaceae), an endemic pitcher plant from Borneo, with a discussion of associated Nepenthes taxa. Blumea 58:8–12. doi:10.3767/000651913X668465

    Article  Google Scholar 

  21. Gaume L, Di Giusto B (2009) Adaptive significance and ontogenetic variability of the waxy zone in Nepenthes rafflesiana. Ann Bot 104:1281–91. doi:10.1093/aob/mcp238

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bauer U, Grafe TU, Federle W (2011) Evidence for alternative trapping strategies in two forms of the pitcher plant, Nepenthes rafflesiana. J Exp Bot 62:3683–3692. doi:10.1093/jxb/err082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lim YS, Schöner CR, Schöner MG et al (2015) How a pitcher plant facilitates roosting of mutualistic woolly bats. Evol Ecol Res 16:1–11

    Google Scholar 

  24. Schöner MG, Schöner CR, Simon R et al (2015) Bats are acoustically attracted to mutualistic carnivorous plants. Curr Biol 25:1911–1916. doi:10.1016/j.cub.2015.05.054

    Article  PubMed  Google Scholar 

  25. Mithöfer A (2011) Carnivorous pitcher plants: insights in an old topic. Phytochemistry 72:1678–1682. doi:10.1016/j.phytochem.2010.11.024

    Article  PubMed  Google Scholar 

  26. Takeuchi Y, Salcher MM, Ushio M et al (2011) In situ enzyme activity in the dissolved and particulate fraction of the fluid from four pitcher plant species of the genus Nepenthes. PLoS One 6:e25144. doi:10.1371/journal.pone.0025144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Amagase S, Mori M, Nakayama S (1972) Digestive enzymes in insectivorous plants. IV Enzymatic digestion of insects by Nepenthes secretion and drosera peltata extract: proteolytic and chitinolytic activities. J Biochem 72:765–767

    CAS  PubMed  Google Scholar 

  28. Mayer E, Adlassnig W, Peroutka M, Lichtscheidl IK (2005) Microflora in the traps of pitcher plants. In: VXII Int. Bot. Congr. p 510

  29. Buch F, Rott M, Rottloff S et al (2013) Secreted pitfall-trap fluid of carnivorous Nepenthes plants is unsuitable for microbial growth. Ann Bot 111:375–383. doi:10.1093/aob/mcs287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eilenberg H, Pnini-Cohen S, Schuster S et al (2006) Isolation and characterization of chitinase genes from pitchers of the carnivorous plant Nepenthes khasiana. J Exp Bot 57:2775–2784. doi:10.1093/jxb/erl048

    Article  CAS  PubMed  Google Scholar 

  31. Hatano N, Hamada T (2008) Proteome analysis of pitcher fluid of the carnivorous plant Nepenthes alata. J Proteome Res 7:809–816. doi:10.1021/pr700566d

    Article  CAS  PubMed  Google Scholar 

  32. Hatano N, Hamada T (2012) Proteomic analysis of secreted protein induced by a component of prey in pitcher fluid of the carnivorous plant Nepenthes alata. J Proteomics 75:4844–4852. doi:10.1016/j.jprot.2012.05.048

    Article  CAS  PubMed  Google Scholar 

  33. Rottloff S, Stieber R, Maischak H et al (2011) Functional characterization of a class III acid endochitinase from the traps of the carnivorous pitcher plant genus, Nepenthes. J Exp Bot 62:4639–4647. doi:10.1093/jxb/err173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sota T, Mogi M, Kato K (1998) Local and regional-scale food web structure in Nepenthes alata pitchers. Biotropica 30:82–91

    Article  Google Scholar 

  35. Yogiara AS, Suhartono MT (2006) A complex bacterial community living in pitcher plant fluid. J Mikrobiol Indones 11:9–14

    Google Scholar 

  36. Morohoshi T, Oikawa M, Sato S et al (2011) Isolation and characterization of novel lipases from a metagenomic library of the microbial community in the pitcher fluid of the carnivorous plant Nepenthes hybrida. J Biosci Bioeng 112:315–20. doi:10.1016/j.jbiosc.2011.06.010

    Article  CAS  PubMed  Google Scholar 

  37. Lüttge U (1964) Untersuchungen zur Physiologie der Carnivoren-Drüsen. Planta 63:103–117

    Article  Google Scholar 

  38. Chou LY, Clarke CM, Dykes GA (2014) Bacterial communities associated with the pitcher fluids of three Nepenthes (Nepenthaceae) pitcher plant species growing in the wild. Arch Microbiol 196:709–717. doi:10.1007/s00203-014-1011-1

    Article  CAS  PubMed  Google Scholar 

  39. Siragusa AJ, Swenson JE, Casamatta DA (2007) Culturable bacteria present in the fluid of the hooded-pitcher plant Sarracenia minor based on 16S rDNA gene sequence data. Microb Ecol 54:324–31. doi:10.1007/s00248-006-9205-y

    Article  CAS  PubMed  Google Scholar 

  40. Peterson CN, Day S, Wolfe BE et al (2008) A keystone predator controls bacterial diversity in the pitcher-plant (Sarracenia purpurea) microecosystem. Environ Microbiol 10:2257–66. doi:10.1111/j.1462-2920.2008.01648.x

    Article  CAS  PubMed  Google Scholar 

  41. Koopman MM, Fuselier DM, Hird S, Carstens BC (2010) The carnivorous pale pitcher plant harbors diverse, distinct, and time-dependent bacterial communities. Appl Environ Microbiol 76:1851–1860. doi:10.1128/AEM.02440-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mouquet N, Daufresne T, Gray SM, Miller TE (2008) Modelling the relationship between a pitcher plant (Sarracenia purpurea) and its phytotelma community: mutualism or parasitism? Funct Ecol 22:728–737. doi:10.1111/j.1365-2435.2008.01421.x

    Article  Google Scholar 

  43. Kozich JJ, Westcott SL, Baxter NT et al (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. doi:10.1128/AEM.01043-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Caporaso JG, Lauber CL, Walters WA et al (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci 108:4516–4522. doi:10.1073/pnas.1000080107/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1000080107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fierer N, Hamady M, Lauber CL, Knight R (2008) The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci 105:17994–17999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. llumina Inc. (2013) Preparing libraries for sequencing on the MiSeq

  47. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high- throughput community sequencing data. Nat Methods 7:335–336. doi:10.1038/nmeth0510-335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  49. Edgar RC, Haas BJ, Clemente JC et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. R Core Team (2014) R: a language and environment for statistical computing

  51. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi:10.1371/journal.pone.0061217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930

    Article  Google Scholar 

  53. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  54. Hill MO, Gauch HG Jr (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58

    Article  Google Scholar 

  55. Lozupone CA, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  57. Bray JR, Curtis T (1957) An ordination of upland forest communities of Southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  58. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  59. Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25. doi:10.1023/B:ANTO.0000024903.10757.6e

    Article  CAS  PubMed  Google Scholar 

  60. Rowe OF, Sánchez-España J, Hallberg KB, Johnson DB (2007) Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environ Microbiol 9:1761–1771. doi:10.1111/j.1462-2920.2007.01294.x

    Article  CAS  PubMed  Google Scholar 

  61. Kersters K, Lisdiyanti P, Komagata K, Swings J (2006) The family Acetobacteraceae: the genera Acetobacter, Acidimonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia. In: Dworkin M, Falkow S, Rosenberg E, et al. (eds) Prokaryotes Vol. 5 Proteobacteria Alpha Beta Subclasses, Third Edit. Springer, pp 163–200

  62. Belova SE, Pankratov TA, Detkova EN et al (2009) Acidisoma tundrae gen. nov., sp. nov. and Acidisoma sibiricum sp. nov., two acidophilic, psychrotolerant members of the Alphaproteobacteria from acidic northern wetlands. Int J Syst Evol Microbiol 59:2283–2290. doi:10.1099/ijs.0.009209-0

    Article  CAS  PubMed  Google Scholar 

  63. Lee JE, Lee S, Sung J, Ko G (2011) Analysis of human and animal fecal microbiota for microbial source tracking. ISME J 5:362–365

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ley RE, Hamady M, Lozupone CA et al (2008) Evolution of mammals and their gut microbes. Science 320(80-):1647–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Endo A, Irisawa T, Futagawa-Endo Y et al (2013) Lactobacillus faecis sp. nov., isolated from animal faeces. Int J Syst Evol Microbiol 63:4502–4507

    Article  CAS  PubMed  Google Scholar 

  66. O’Shea EF, Gardiner GE, O’Connor PM et al (2009) Characterization of enterocin- and salivaricin-producing lactic acid bacteria from the mammalian gastrointestinal tract. FEMS Microbiol Lett 291:24–34

    Article  PubMed  Google Scholar 

  67. Sayers EW, Barrett T, Benson DA et al (2011) Database resources of the national centre for biotechnology information. Nucleic Acids Res 39:D38–D51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  69. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. McMurdie PJ, Holmes S (2014) Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol 10:e1003531. doi:10.1371/journal.pcbi.1003531

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bagley S (1985) Habitat association of Klebsiella species. Infect Control 6:52–58

    CAS  PubMed  Google Scholar 

  72. Redford AJ, Fierer N (2009) Bacterial succession on the leaf surface: a novel system for studying successional dynamics. Plant-Microbe Interact 58:189–198

    Google Scholar 

  73. Takeuchi Y, Chaffron S, Salcher MM et al (2015) Bacterial diversity and composition in the fluid of pitcher plants of the genus Nepenthes. Syst Appl Microbiol 38:330–339. doi:10.1016/j.syapm.2015.05.006

    Article  PubMed  Google Scholar 

  74. Raj G, Kurup R, Hussain AA, Baby S (2011) Distribution of naphthoquinones, plumbagin, droserone, and 5-O-methyl droserone in chitin-induced and uninduced Nepenthes khasiana: molecular events in prey capture. J Exp Bot 62:5429–5436. doi:10.1093/jxb/err219

    Article  CAS  PubMed  Google Scholar 

  75. Morotomi M, Yuki N, Kado Y et al (2002) Lactobacillus equi sp. nov., a predominant intestinal Lactobacillus species of the horse isolated from faeces of healthy horses. Int J Syst Evol Microbiol 52:211–214

    Article  PubMed  Google Scholar 

  76. Roos S, Karner F, Axelsson L, Jonsson H (2000) Lactobacillus mucosae sp. nov., a new species with in vitro mucus-binding activity isolated from pig intestine. Int J Syst Evol Microbiol 50:251–258

    Article  CAS  PubMed  Google Scholar 

  77. Walter J, Britton RA, Roos S (2011) Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm. Proc Natl Acad Sci 108:4645–4652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Howard ST, Byrd TF (2000) The rapidly growing mycobacteria: saprophytes and parasites. Microbes Infect 2:1845–1853

    Article  CAS  PubMed  Google Scholar 

  79. Oram DM, Avdalovic A, Holmes RK (2004) Analysis of genes that encode DtxR-like transcriptional regulators in pathogenic and saprophytic corynebacterial species. Infect Immunol 72:1885–1895

    Article  CAS  Google Scholar 

  80. Abe S, Takayama KI, Kinoshita S (1967) Taxonomical studies on glutamic acid-producing bacteria. J Gen Appl Microbiol 13:279–301

    Article  Google Scholar 

  81. Pitcher D, Soto A, Soriano F, Valero-Guillén P (1992) Classification of coryneform bacteria associated with human urinary tract infection (group D2) as Corynebacterium urealyticum sp. nov. Int J Syst Bacteriol 42:178–181

    Article  CAS  PubMed  Google Scholar 

  82. Yabuuchi E, Kaneko T, Yano I et al (1983) Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Evol Bacteriol 33:580–598

    Article  Google Scholar 

  83. Anes E, Kühnel MP, Bos E et al (2003) Selected lipids activate phagosome actin assembly and maturation resulting in killing of pathogenic mycobacteria. Nat Cell Biol 5:793–802. doi:10.1038/ncb1036.NATURE

    Article  CAS  PubMed  Google Scholar 

  84. Cosma CL, Sherman DR, Ramakrishnan L (2003) The secret lives of the pathogenic mycobacteria. Annu Rev Microbiol 57:641–676. doi:10.1146/annurev.micro.57.030502.091033

    Article  CAS  PubMed  Google Scholar 

  85. Bazile V, Le Moguédec G, Marshall DJ, Gaume L (2015) Fluid physico-chemical properties influence capture and diet in Nepenthes pitcher plants. Ann Bot 115:705–716. doi:10.1093/aob/mcu266

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci 103:626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kimoto KI, Aizawa T, Urai M et al (2010) Acidocella aluminiidurans sp. nov., an aluminium-tolerant bacterium isolated from Panicum repens grown in a highly acidic swamp in actual acid sulfate soil area of Vietnam. Int J Syst Evol Microbiol 60:764–768

    Article  CAS  PubMed  Google Scholar 

  89. Jones RM, Hedrich S, Johnson DB (2013) Acidocella aromatica sp. nov.: an acidophilic heterotrophic alphaproteobacterium with unusual phenotypic traits. Extremophiles 17:841–850

    Article  CAS  PubMed  Google Scholar 

  90. Bragina A, Maier S, Berg C et al (2012) Similar diversity of Alphaproteobacteria and nitrogenase gene amplicons on two related Sphagnum mosses. Front Microbiol 2:1–10

    Article  Google Scholar 

  91. Dröge S, Rachel R, Radek R, König H (2008) Treponema isoptericolens sp. nov., a novel spirochaete from the hindgut of the termite Incisitermes tabogae. Int J Syst Evol Microbiol 58:1079–1083. doi:10.1099/ijs.0.64699-0

    Article  PubMed  Google Scholar 

  92. Graber JR, Leadbetter JR, Breznak JA (2004) Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl Environ Microbiol 70:1315–1320. doi:10.1128/AEM.70.3.1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorous and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  94. Boiero L, Perrig D, Masciarelli O et al (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    Article  CAS  PubMed  Google Scholar 

  95. Prankevicius AB, Cameron DM (1991) Bacterial dinitrogen fixation in the leaf of the northern pitcher plant (Sarracenia purpurea). Can J Bot 69:2296–2298. doi:10.1139/b91-289

    Article  Google Scholar 

  96. Bermudes D, Benzing DH (1991) Nitrogen fixation in association with Ecuadorean bromeliads. J Trop Ecol 7:531–536

    Article  Google Scholar 

  97. Bhore SJ, Komathi V, Kandasamy KI (2013) Diversity of endophytic bacteria in medicinally important Nepenthes species. J Nat Sci Biol Med 4:431–434

    Article  PubMed  PubMed Central  Google Scholar 

  98. Videira SS, de Araujo JLS, da Silva RL et al (2009) Occurrence and diversity of nitrogen-fixing Sphingomonas bacteria associated with rice plants grown in Brazil. FEMS Microbiol Lett 293:11–19. doi:10.1111/j.1574-6968.2008.01475.x

    Article  CAS  PubMed  Google Scholar 

  99. Chen B, Shen J, Zhang X et al (2014) The endophytic bacterium, Sphingomonas SaMR12, improves the potential for zinc phytoremediation by its host, Sedum alfredii. PLoS One 9:e106826. doi:10.1371/journal.pone.0106826

    Article  PubMed  PubMed Central  Google Scholar 

  100. Blatrix R, Djiéto-Lordon C, Mondolot L et al (2012) Plant-ants use symbiotic fungi as a food source: new insight into the nutritional ecology of ant-plant interactions. Proc R Soc B 279:3940–3947. doi:10.1098/rspb.2012.1403

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to the Universitätsbund Würzburg e.V. for financially supporting this project (Grant number AZ-13-43) and the University of Würzburg/Land Bavaria for covering staff costs. We are furthermore most grateful to the Universiti Brunei Darussalam for logistical and financial support (URG 193) and the Brunei Darussalam Forestry Department for permission to enter forests and for granting the sampling permits (46/JPH/UND/17 PT.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Keller.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplemental File 1

Rarefaction curves for each sample. Sub-divided by tissue for visualisation reasons. Black = N. hemsleyana, red = N. rafflesiana, # in Fluid rarefaction indicates N. hemsleyana fluid replicates with observed bat roosting. (PDF 212 kb)

Supplemental File 2

List of all detected taxa. Lineage as well as affiliation to pre-selected groups according to Materials & Methods are provided. (TXT 200 kb)

Supplemental File 3

Mean relative abundance of taxa in clusters; given in mean (SD; median). Mean relative abundance values refer to the mean in the following groups: fluid samples of N. hemsleyana (first column), fluid samples of N. rafflesiana (second column), all other samples (third column). (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sickel, W., Grafe, T.U., Meuche, I. et al. Bacterial Diversity and Community Structure in Two Bornean Nepenthes Species with Differences in Nitrogen Acquisition Strategies. Microb Ecol 71, 938–953 (2016). https://doi.org/10.1007/s00248-015-0723-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0723-3

Keywords

Navigation