Skip to main content
Log in

Analysis of cbbL, nifH, and pufLM in Soils from the Sør Rondane Mountains, Antarctica, Reveals a Large Diversity of Autotrophic and Phototrophic Bacteria

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Cyanobacteria are generally thought to be responsible for primary production and nitrogen fixation in the microbial communities that dominate Antarctic ecosystems. Recent studies of bacterial communities in terrestrial Antarctica, however, have shown that Cyanobacteria are sometimes only scarcely present, suggesting that other bacteria presumably take over their role as primary producers and diazotrophs. The diversity of key genes in these processes was studied in surface samples from the Sør Rondane Mountains, Dronning Maud Land, using clone libraries of the large subunit of ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO) genes (cbbL, cbbM) and dinitrogenase-reductase (nifH) genes. We recovered a large diversity of non-cyanobacterial cbbL type IC in addition to cyanobacterial type IB, suggesting that non-cyanobacterial autotrophs may contribute to primary production. The nifH diversity recovered was predominantly related to Cyanobacteria, particularly members of the Nostocales. We also investigated the occurrence of proteorhodopsin and anoxygenic phototrophy as mechanisms for non-Cyanobacteria to exploit solar energy. While proteorhodopsin genes were not detected, a large diversity of genes coding for the light and medium subunits of the type 2 phototrophic reaction center (pufLM) was observed, suggesting for the first time, that the aerobic photoheterotrophic lifestyle may be important in oligotrophic high-altitude ice-free terrestrial Antarctic habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wynn-Williams DD (1990) Microbial colonization processes in Antarctic fellfield soils: an experimental overview (eleventh symposium on polar biology). Proceedings of the NIPR Symposium on Polar Biology 3:164–178

    Google Scholar 

  2. Convey P, Gibson JAE, Hillenbrand C-D, Hodgson DA, Pugh PJA, Smellie JL, Stevens MI (2008) Antarctic terrestrial life—challenging the history of the frozen continent? Biol Rev 83:103–117. doi:10.1111/j.1469-185X.2008.00034.x

    Article  PubMed  Google Scholar 

  3. Matsuoka N, Thomachot CE, Oguchi CT, Hatta T, Abe M, Matsuzaki H (2006) Quaternary bedrock erosion and landscape evolution in the Sor Rondane mountains, East Antarctica: reevaluating rates and processes. Geomorphology 81:408–420. doi:10.1016/j.geomorph.2006.05.005

    Article  Google Scholar 

  4. Convey P, Stevens MI (2007) Antarctic biodiversity. Science 317:1877–1878. doi:10.1126/science.1147261

    Article  PubMed  CAS  Google Scholar 

  5. Greene DM, Holtom A (1971) Studies in Colobanthus quitensis (Kunth) Bartl. & Deschampsia antarctica Desv. III. Distribution, habitats and perfomance in the Antarctic botanical zone. British Antarctic Survey Bulletin 26:1–29

    Google Scholar 

  6. Michaud AB, Šabacká M, Priscu JC (2012) Cyanobacterial diversity across landscape units in a polar desert: Taylor valley, Antarctica. FEMS Microbiol Ecol. doi:10.1111/j.1574-6941.2012.01297.x

    Google Scholar 

  7. Cowan DA, Sohm JA, Makhalanyane TP, Capone DG, Green TGA, Cary SC, Tuffin IM (2011) Hypolithic communities: important nitrogen sources in Antarctic desert soils. Environ Microbiol Rep 3:581–586. doi:10.1111/j.1758-2229.2011.00266.x

    Article  PubMed  CAS  Google Scholar 

  8. Moodley K (2004) Microbial diversity of Antarctic dry valley mineral soil. University of the Western Cape

  9. Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA (2007) Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol 9:2670–2682. doi:10.1111/j.1462-2920.2007.01379.x

    Article  PubMed  CAS  Google Scholar 

  10. Yergeau E, Bokhorst S, Huiskes AHL, Boschker HTS, Aerts R, Kowalchuk GA (2007) Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol Ecol 59:436–451. doi:10.1111/j.1574-6941.2006.00200.x

    Article  PubMed  CAS  Google Scholar 

  11. Tabita FR (1999) Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective. Photosynth Res 60:1–28. doi:10.1023/a:1006211417981

    Article  CAS  Google Scholar 

  12. Kellermann C (2009) Autotrophy in groundwater ecosystems. LMU Munich, Dissertation

    Google Scholar 

  13. Tourova TP, Spiridonova EM (2009) Phylogeny and evolution of the ribulose 1,5-bisphosphate carboxylase/oxygenase genes in prokaryotes. Mol Biol 43:713–728. doi:10.1134/s0026893309050033

    Article  CAS  Google Scholar 

  14. Badger MR, Bek EJ (2008) Multiple rubisco forms in Proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. J Exp Bot 59:1525–1541. doi:10.1093/jxb/erm297

    Article  PubMed  CAS  Google Scholar 

  15. Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs K-J, Stunnenberg HG, Jetten MSM, Op den Camp HJM (2011) Autotrophic methanotrophy in verrucomicrobia: methylacidiphilum fumariolicumSolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J Bacteriol 193:4438–4446. doi:10.1128/jb.00407-11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Caldwell PE, MacLean MR, Norris PR (2007) Ribulose bisphosphate carboxylase activity and a Calvin cycle gene cluster in Sulfobacillus species. Microbiology 153:2231–2240. doi:10.1099/mic.0.2007/006262-0

    Article  PubMed  CAS  Google Scholar 

  17. Grostern A, Alvarez-Cohen L (2013) RubisCO-based CO2 fixation and C1 metabolism in the actinobacterium Pseudonocardia dioxanivorans CB1190. Environ Microbiol 15:3040–3053. doi:10.1111/1462-2920.12144

    PubMed  CAS  Google Scholar 

  18. Park SW, Hwang EH, Jang HS, Lee JH, Kang BS, Oh JI, Kim YM (2009) Presence of duplicate genes encoding a phylogenetically new subgroup of form I ribulose 1,5-bisphosphate carboxylase/oxygenase in Mycobacterium sp. strain JC1 DSM 3803. Res Microbiol 160:159–165. doi:10.1016/j.resmic.2008.12.002

    Article  PubMed  CAS  Google Scholar 

  19. Van Der Wielen PWJJ (2006) Diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes in the MgCl2-dominated deep hypersaline anoxic basin discovery. FEMS Microbiol Lett 259:326–331. doi:10.1111/j.1574-6968.2006.00284.x

    Article  PubMed  Google Scholar 

  20. Selesi D, Schmid M, Hartmann A (2005) Diversity of green-like and red-like ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes (cbbL) in differently managed agricultural soils. Appl Environ Microbiol 71:175–184. doi:10.1128/aem.71.1.175-184.2005

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Nakai R, Abe T, Baba T, Imura S, Kagoshima H, Kanda H, Kohara Y, Koi A, Niki H, Yanagihara K, Naganuma T (2012) Diversity of RuBisCO gene responsible for CO2 fixation in an Antarctic moss pillar. Polar Biol 35:1641–1650. doi:10.1007/s00300-012-1204-5

  22. Hanson TE, Tabita FR (2001) A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci U S A 98:4397–4402. doi:10.1073/pnas.081610398

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Howard KS, McLean PA, Hansen FB, Lemley PV, Koblan KS, Ormejohnson WH (1986) Klebsiella pneumoniae nifM gene product is required for stabilization and activation of nitrogenase iron protein in Escherichia coli. J Biol Chem 261:772–778

    PubMed  CAS  Google Scholar 

  24. Fogg GE, Stewart WDP (1968) In situ determination of biological nitrogen fixation in Antarctica. British Antarctic Survey Bulletin 15:36–46

    Google Scholar 

  25. Fritsen CH, Grue AM, Priscu JC (2000) Distribution of organic carbon and nitrogen in surface soils in the McMurdo Dry Valleys, Antarctica. Polar Biol 23:121–128. doi:10.1007/s003000050017

    Article  Google Scholar 

  26. Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554. doi:10.1046/j.1462-2920.2003.00451.x

    Article  PubMed  CAS  Google Scholar 

  27. Yeager CM, Kornosky JL, Housman DC, Grote EE, Belnap J, Kuske CR (2004) Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado plateau and Chihuahuan desert. Appl Environ Microbiol 70:973–983. doi:10.1128/aem.70.2.973-983.2004

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Palovaara J, Akram N, Baltar F, Bunse C, Forsberg J, Pedros-Alio C, Gonzalez JM, Pinhassi J (2014) Stimulation of growth by proteorhodopsin phototrophy involves regulation of central metabolic pathways in marine planktonic bacteria. Proc Natl Acad Sci U S A 111:E3650–E3658. doi:10.1073/pnas.1402617111

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Beja O, Lanyi JK (2014) Nature's toolkit for microbial rhodopsin ion pumps. Proc Natl Acad Sci U S A 111:6538–6539. doi:10.1073/pnas.1405093111

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Bamann C, Bamberg E, Wachtveitl J, Glaubitz C (2014) Proteorhodopsin. Biochimica Et Biophysica Acta-Bioenergetics 1837:614–625. doi:10.1016/j.bbabio.2013.09.010

    Article  CAS  Google Scholar 

  31. Hauruseu D, Koblížek M (2012) Influence of light on carbon utilization in aerobic anoxygenic phototrophs. Appl Environ Microbiol 78:7414–7419. doi:10.1128/aem.01747-12

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Koblizek M, Beja O, Bidigare RR, Christensen S, Benitez-Nelson B, Vetriani C, Kolber MK, Falkowski PG, Kolber ZS (2003) Isolation and characterization of erythrobacter sp strains from the upper ocean. Arch Microbiol 180:327–338. doi:10.1007/s00203-003-0596-6

    Article  PubMed  CAS  Google Scholar 

  33. Alberti M, Burke D, Hearst J (1995) Structure and sequence of the photosynthesis gene cluster. In: Blankenship R, Madigan M, Bauer C (eds) Anoxygenic photosynthetic bacteria. Springer, Netherlands, pp 1083–1106

    Google Scholar 

  34. Jiang H, Deng S, Huang Q, Dong H, Yu B (2010) Response of aerobic anoxygenic phototrophic bacterial diversity to environment conditions in saline lakes and Daotang river on the Tibetan plateau, NW China. Geomicrobiol J 27:400–408. doi:10.1080/01490450903480269

    Article  Google Scholar 

  35. Salka I, Cuperova Z, Masin M, Koblizek M, Grossart H-P (2011) Rhodoferax-related pufM gene cluster dominates the aerobic anoxygenic phototrophic communities in German freshwater lakes. Environ Microbiol 13:2865–2875. doi:10.1111/j.1462-2920.2011.02562.x

    Article  PubMed  CAS  Google Scholar 

  36. Perreault NN, Greer CW, Andersen DT, Tille S, Lacrampe-Couloume G, Lollar BS, Whyte LG (2008) Heterotrophic and autotrophic microbial populations in cold perennial springs of the high arctic. Appl Environ Microbiol 74:6898–6907. doi:10.1128/aem.00359-08

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Achenbach LA, Carey J, Madigan MT (2001) Photosynthetic and phylogenetic primers for detection of anoxygenic phototrophs in natural environments. Appl Environ Microbiol 67:2922–2926. doi:10.1128/aem.67.7.2922-2926.2001

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Cottrell MT, Kirchman DL (2009) Photoheterotrophic microbes in the arctic ocean in summer and winter. Appl Environ Microbiol 75:4958–4966. doi:10.1128/aem.00117-09

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Jeanthon C, Boeuf D, Dahan O, Le Gall F, Garczarek L, Bendif EM, Lehours A-C (2011) Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea. Biogeosciences 8:1955–1970. doi:10.5194/bg-8-1955-2011

    Article  CAS  Google Scholar 

  40. Lehours A-C, Cottrell MT, Dahan O, Kirchman DL, Jeanthon C (2010) Summer distribution and diversity of aerobic anoxygenic phototrophic bacteria in the Mediterranean Sea in relation to environmental variables. FEMS Microbiol Ecol 74:397–409. doi:10.1111/j.1574-6941.2010.00954.x

    Article  PubMed  CAS  Google Scholar 

  41. Ritchie AE, Johnson ZI (2012) Abundance and genetic diversity of aerobic anoxygenic phototrophic bacteria of coastal regions of the Pacific Ocean. Appl Environ Microbiol 78:2858–2866. doi:10.1128/aem.06268-11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Yutin N, Suzuki MT, Béjà O (2005) Novel primers reveal wider diversity among marine aerobic anoxygenic phototrophs. Appl Environ Microbiol 71:8958–8962. doi:10.1128/aem.71.12.8958-8962.2005

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Karr EA, Sattley WM, Jung DO, Madigan MT, Achenbach LA (2003) Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake. Appl Environ Microbiol 69:4910–4914. doi:10.1128/aem.69.8.4910-4914.2003

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Jiang H, Dong H, Yu B, Lv G, Deng S, Wu Y, Dai M, Jiao N (2009) Abundance and diversity of aerobic anoxygenic phototrophic bacteria in saline lakes on the Tibetan plateau. FEMS Microbiol Ecol 67:268–278. doi:10.1111/j.1574-6941.2008.00616.x

    Article  PubMed  CAS  Google Scholar 

  45. Koh EY, Phua W, Ryan KG (2011) Aerobic anoxygenic phototrophic bacteria in Antarctic sea ice and seawater. Environ Microbiol Rep 3:710–716. doi:10.1111/j.1758-2229.2011.00286.x

    Article  PubMed  CAS  Google Scholar 

  46. Tytgat B, Verleyen E, Obbels D, Peeters K, De Wever A, D'Hondt S, De Meyer T, Van Criekinge W, Vyverman W, Willems A (2014) Bacterial diversity assessment in Antarctic terrestrial and aquatic microbial mats: a comparison between bidirectional pyrosequencing and cultivation. Plos One 9. doi: 10.1371/journal.pone.0097564

  47. Yuan H, Ge T, Chen C, O'Donnell AG, Wu J (2012) Significant role for microbial autotrophy in the sequestration of soil carbon. Appl Environ Microbiol 78:2328–2336. doi:10.1128/aem.06881-11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Kato S, Nakawake M, Ohkuma M, Yamagishi A (2012) Distribution and phylogenetic diversity of cbbM genes encoding RubisCO form II in a deep-sea hydrothermal field revealed by newly designed PCR primers. Extremophiles 16:277–283. doi:10.1007/s00792-011-0428-6

    Article  PubMed  CAS  Google Scholar 

  49. Allgaier M, Uphoff H, Felske A, Wagner-Döbler I (2003) Aerobic anoxygenic photosynthesis in roseobacter clade bacteria from diverse marine habitats. Appl Environ Microbiol 69:5051–5059. doi:10.1128/aem.69.9.5051-5059.2003

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Yoshizawa S, Kawanabe A, Ito H, Kandori H, Kogure K (2012) Diversity and functional analysis of proteorhodopsin in marine flavobacteria. Environ Microbiol 14:1240–1248. doi:10.1111/j.1462-2920.2012.02702.x

    Article  PubMed  CAS  Google Scholar 

  51. Campbell BJ, Waidner LA, Cottrell MT, Kirchman DL (2008) Abundant proteorhodopsin genes in the North Atlantic Ocean. Environ Microbiol 10:99–109. doi:10.1111/j.1462-2920.2007.01436.x

    PubMed  CAS  Google Scholar 

  52. Wu L, Cui Y, Chen S (2011) Diversity of nifH gene sequences in the sediments of South China Sea. Afr J Microbiol Res 5:5972–5977. doi:10.5897/ajmr11.1173

    CAS  Google Scholar 

  53. Spiridonova EM, Berg IA, Kolganova TV, Ivanovsky RN, Kuznetsov BB, Tourova TP (2004) An oligonucleotide primer system for amplification of the ribulose-1,5-bisphosphate carboxylase/oxygenase genes of bacteria of various taxonomic groups. Microbiology 73:316–325. doi:10.1023/b:mici.0000032243.93917.30

    Article  CAS  Google Scholar 

  54. Nanba K, King GM, Dunfield K (2004) Analysis of facultative lithotroph distribution and diversity on volcanic deposits by Use of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase. Appl Environ Microbiol 70:2245–2253. doi:10.1128/aem.70.4.2245-2253.2004

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Nagashima K, Hiraishi A, Shimada K, Matsuura K (1997) Horizontal transfer of genes coding for the photosynthetic reaction centers of purple bacteria. J Mol Evol 45:131–136. doi:10.1007/pl00006212

    Article  PubMed  CAS  Google Scholar 

  56. Beja O, Suzuki MT, Heidelberg JF, Nelson WC, Preston CM, Hamada T, Eisen JA, Fraser CM, DeLong EF (2002) Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415:630–633

    Article  PubMed  CAS  Google Scholar 

  57. Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103. doi:10.1016/s0923-2508(00)01172-4

    Article  PubMed  CAS  Google Scholar 

  58. Markowitz VM, Chen IMA, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, Huntemann M, Anderson I, Mavromatis K, Ivanova NN, Kyrpides NC (2012) IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 40:D115–D122. doi:10.1093/nar/gkr1044

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/aem.01541-09

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi:10.1093/bioinformatics/btr381

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soeding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7. doi: 10.1038/msb.2011.75

  63. Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38:W695–W699. doi:10.1093/nar/gkq313

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  64. Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490. doi:10.1371/journal.pone.0009490

    Article  PubMed Central  PubMed  Google Scholar 

  65. Letunic I, Bork P (2007) Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23:127–128. doi:10.1093/bioinformatics/btl529

    Article  PubMed  CAS  Google Scholar 

  66. Letunic I, Bork P (2011) Interactive tree of life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 39:W475–W478. doi:10.1093/nar/gkr201

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  67. Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930. doi:10.1111/j.1654-1103.2003.tb02228.x

    Article  Google Scholar 

  68. Elsaied H, Naganuma T (2001) Phylogenetic diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from deep-sea microorganisms. Appl Environ Microbiol 67:1751–1765. doi:10.1128/aem.67.4.1751-1765.2001

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Kovaleva OL, Tourova TP, Muyzer G, Kolganova TV, Sorokin DY (2011) Diversity of RuBisCO and ATP citrate lyase genes in soda lake sediments. FEMS Microbiol Ecol 75:37–47. doi:10.1111/j.1574-6941.2010.00996.x

    Article  PubMed  CAS  Google Scholar 

  70. Elsaied H, Kimura H, Naganuma T (2007) Composition of archaeal, bacterial, and eukaryal RuBisCO genotypes in three Western Pacific arc hydrothermal vent systems. Extremophiles 11:191–202. doi:10.1007/s00792-006-0025-2

    Article  PubMed  CAS  Google Scholar 

  71. Kojima H, Fukuhara H, Fukui M (2009) Community structure of microorganisms associated with reddish-brown iron-rich snow. Syst Appl Microbiol 32:429–437. doi:10.1016/j.syapm.2009.06.003

    Article  PubMed  CAS  Google Scholar 

  72. Gaby JC, Buckley DH (2012) A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. Plos One 7. doi: 10.1371/journal.pone.0042149

  73. Feng Y, Lin X, Wang Y, Zhang J, Mao T, Yin R, Zhu J (2009) Free-air CO2 enrichment (FACE) enhances the biodiversity of purple phototrophic bacteria in flooded paddy soil. Plant Soil 324:317–328. doi:10.1007/s11104-009-9959-3

    Article  CAS  Google Scholar 

  74. Feng Y, Lin X, Yu Y, Zhu J (2011) Elevated ground-level O-3 changes the diversity of anoxygenic purple phototrophic bacteria in paddy field. Microb Ecol 62:789–799. doi:10.1007/s00248-011-9895-7

    Article  PubMed  CAS  Google Scholar 

  75. Feng Y, Lin X, Mao T, Zhu J (2011) Diversity of aerobic anoxygenic phototrophic bacteria in paddy soil and their response to elevated atmospheric CO2. Microb Biotechnol 4:74–81. doi:10.1111/j.1751-7915.2010.00211.x

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Kong W, Dolhi JM, Chiuchiolo A, Priscu J, Morgan-Kiss RM (2012) Evidence of form II RubisCO (cbbM) in a perennially ice-covered Antarctic lake. FEMS Microbiol Ecol 82:491–500. doi:10.1111/j.1574-6941.2012.01431.x

    Article  PubMed  CAS  Google Scholar 

  77. Kong W, Ream DC, Priscu JC, Morgan-Kiss RM (2012) Diversity and expression of RubisCO genes in a perennially ice-covered Antarctic lake during the polar night transition. Appl Environ Microbiol. doi:10.1128/aem.00029-12

    Google Scholar 

  78. Tourova TP, Kovaleva OL, Sorokin DY, Muyzer G (2010) Ribulose-1,5-bisphosphate carboxylase/oxygenase genes as a functional marker for chemolithoautotrophic halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology 156:2016–2025. doi:10.1099/mic.0.034603-0

    Article  PubMed  CAS  Google Scholar 

  79. Tourova TP, Kovaleva OL, Bumazhkin BK, Patutina EO, Kuznetsov BB, Bryantseva IA, Gorlenko VM, Sorokin DY (2011) Application of ribulose-1,5-bisphosphate carboxylase/oxygenase genes as molecular markers for assessment of the diversity of autotrophic microbial communities inhabiting the upper sediment horizons of the saline and soda lakes of the Kulunda Steppe. Microbiology 80:812–825. doi:10.1134/S0026261711060221

    Article  CAS  Google Scholar 

  80. Yousuf B, Keshri J, Mishra A, Jha B (2012) Application of targeted metagenomics to explore abundance and diversity of CO2-fixing bacterial community using cbbL gene from the rhizosphere of Arachis hypogaea. Gene 506:18–24. doi:10.1016/j.gene.2012.06.083

    Article  PubMed  CAS  Google Scholar 

  81. Boyd ES, Hamilton TL, Havig JR, Skidmore ML, Shock EL (2014) Chemolithotrophic primary production in a subglacial ecosystem. Appl Environ Microbiol 80:6146–6153. doi:10.1128/aem.01956-14

    Article  PubMed Central  PubMed  Google Scholar 

  82. Delwiche CF, Palmer JD (1996) Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol Biol Evol 13:873–882

    Article  PubMed  CAS  Google Scholar 

  83. Díez B, Bergman B, Pedrós-Alió C, Antó M, Snoeijs P (2012) High cyanobacterial nifH gene diversity in arctic seawater and sea ice brine. Environ Microbiol Rep 4:360–366. doi:10.1111/j.1758-2229.2012.00343.x

    Article  PubMed  Google Scholar 

  84. Olson JB, Steppe TF, Litaker RW, Paerl HW (1998) N < inf > 2</inf > -fixing microbial consortia associated with the ice cover of lake Bonney, Antarctica. Microb Ecol 36:231–238. doi:10.1007/s002489900110

    Article  PubMed  CAS  Google Scholar 

  85. Dodds WK, Gudder DA, Mollenhauer D (1995) The ecology of nostoc. J Phycol 31:2–18. doi:10.1111/j.0022-3646.1995.00002.x

    Article  CAS  Google Scholar 

  86. Hawes I, Howardwilliams C, Vincent WF (1992) Desiccation and recovery of antarctic cyanobacterial mats. Polar Biol 12:587–594

    Article  Google Scholar 

  87. Teixeira LCRS, Peixoto RS, Cury JC, Sul WJ, Pellizari VH, Tiedje J, Rosado AS (2010) Bacterial diversity in rhizosphere soil from antarctic vascular plants of admiralty bay, maritime Antarctica. ISME J 4:989–1001. doi:10.1038/ismej.2010.35

    Article  PubMed  Google Scholar 

  88. Jung JY, Choi AR, Lee YK, Lee HK, Jung K-H (2008) Spectroscopic and photochemical analysis of proteorhodopsin variants from the surface of the Arctic Ocean. FEBS Lett 582:1679–1684. doi:10.1016/j.febslet.2008.04.025

    Article  PubMed  CAS  Google Scholar 

  89. Atamna-Ismaeel N, Sabehi G, Sharon I, Witzel K-P, Labrenz M, Jurgens K, Barkay T, Stomp M, Huisman J, Beja O (2008) Widespread distribution of proteorhodopsins in freshwater and brackish ecosystems. ISME J 2:656–662

    Article  PubMed  CAS  Google Scholar 

  90. Koh EY, Atamna-Ismaeel N, Martin A, Cowie ROM, Beja O, Davy SK, Maas EW, Ryan KG (2010) Proteorhodopsin-bearing bacteria in antarctic sea ice. Appl Environ Microbiol 76:5918–5925. doi:10.1128/aem.00562-10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Sabehi G, Loy A, Jung K-H, Partha R, Spudich JL, Isaacson T, Hirschberg J, Wagner M, Béjà O (2005) New insights into metabolic properties of marine bacteria encoding proteorhodopsins. PLoS Biol 3, e273. doi:10.1371/journal.pbio.0030273

    Article  PubMed Central  PubMed  Google Scholar 

  92. Tank M, Thiel V, Imhoff JF (2009) Phylogenetic relationship of phototrophic purple sulfur bacteria according to pufL and pufM genes. Int Microbiol 12:175–185. doi:10.2436/20.1501.01.96

    PubMed  CAS  Google Scholar 

  93. Feng Y, Grogan P, Caporaso JG, Zhang H, Lin X, Knight R, Chu H (2014) pH is a good predictor of the distribution of anoxygenic purple phototrophic bacteria in arctic soils. Soil Biol Biochem 74:193–200. doi:10.1016/j.soilbio.2014.03.014

    Article  CAS  Google Scholar 

  94. Feng Y, Lin X, Zhang J, Mao T, Zhu J (2011) Soil purple phototrophic bacterial diversity under double cropping (rice-wheat) with free-air CO2 enrichment (FACE). Eur J Soil Sci 62:533–540. doi:10.1111/j.1365-2389.2011.01357.x

    Article  Google Scholar 

  95. Waidner LA, Kirchman DL (2008) Diversity and distribution of ecotypes of the aerobic anoxygenic phototrophy gene pufM in the Delaware estuary. Appl Environ Microbiol 74:4012–4021. doi:10.1128/aem.02324-07

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  96. Masin M, Nedoma J, Pechar L, Koblizek M (2008) Distribution of aerobic anoxygenic phototrophs in temperate freshwater systems. Environ Microbiol 10:1988–1996. doi:10.1111/j.1462-2920.2008.01615.x

    Article  PubMed  CAS  Google Scholar 

  97. Peeters K, Ertz D, Willems A (2011) Culturable bacterial diversity at the princess Elisabeth station (Utsteinen, Sør Rondane Mountains, East Antarctica) harbours many new taxa. Syst Appl Microbiol 34:360–367. doi:10.1016/j.syapm.2011.02.002

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Fund for Scientific Research—Flanders (project G.0146.12). Additional support was obtained from the Belgian Science Policy Office (project CCAMBIO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Willems.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table S1

(PDF 428 kb)

Fig. S1

(DOCX 321 kb)

Fig. S2

(DOCX 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahon, G., Tytgat, B., Stragier, P. et al. Analysis of cbbL, nifH, and pufLM in Soils from the Sør Rondane Mountains, Antarctica, Reveals a Large Diversity of Autotrophic and Phototrophic Bacteria. Microb Ecol 71, 131–149 (2016). https://doi.org/10.1007/s00248-015-0704-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0704-6

Keywords

Navigation