Skip to main content
Log in

Amino Acid and Peptide Utilization Profiles of the Fluoroacetate-Degrading Bacterium Synergistetes Strain MFA1 Under Varying Conditions

  • Physiology and Biotechnology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Synergistetes strain MFA1 is an asaccharolytic ruminal bacterium isolated based on its ability to degrade fluoroacetate, a plant toxin. The amino acid and peptide requirements of the bacterium were investigated under different culturing conditions. The growth of strain MFA1 and its fluoroacetate degradation rate were enhanced by peptide-rich protein hydrolysates (tryptone and yeast extract) compared to casamino acid, an amino acid-rich protein hydrolysate. Complete utilization and preference for arginine, asparagine, glutamate, glycine, and histidine as free amino acids from yeast extract were observed, while the utilization of serine, threonine, and lysine in free form and peptide-bound glutamate was stimulated during growth on fluoroacetate. A predominant peptide in yeast extract preferentially utilized by strain MFA1 was partially characterized by high-liquid performance chromatography-mass spectrometry as a hepta-glutamate oligopeptide. Similar utilization profiles of amino acids were observed between the co-culture of strain MFA1 with Methanobrevibacter smithii without fluoroacetate and pure strain MFA1 culture with fluoroacetate. This suggests that growth of strain MFA1 could be enhanced by a reduction of hydrogen partial pressure as a result of hydrogen removal by a methanogen or reduction of fluoroacetate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vartoukian SR, Palmer RM, Wade WG (2007) The division “Synergistes”. Anaerobe 13:99–106

    Article  CAS  PubMed  Google Scholar 

  2. Godon JJ, Moriniere J, Moletta M, Gaillac M, Bru V, Delgenes JP (2005) Rarity associated with specific ecology niches in the bacterial world: the ‘Synergistes’ example. Environ Microbiol 7:213–224

    Article  CAS  PubMed  Google Scholar 

  3. Baena S, Fradeau ML, Ollivier B, Labat M, Thomas P, Garcia JL, Patel BKC (1999) Aminomonas paucivorans gen. nov., sp. nov., a mesophilic, anaerobic, amino-acid-utilizing bacterium. Int J Syst Evol Microbiol 49:975–982

    CAS  Google Scholar 

  4. Ganesan A, Sebastien C, Tarrade A, Dauga C, Bouchez T, Pelletier E, Le Paslier D, Sghir A (2008) Cloacibacillus evryensis gen. nov., sp. nov., a novel asaccharolytic, mesophilic, amino-acid-degrading bacterium within the phylum ‘Synergistetes’, isolated from an anaerobic sludge digester. Int J Syst Evol Microbiol 58:2003–2012

    Article  CAS  PubMed  Google Scholar 

  5. Zavarzina DG, Zhilina TN, Tourova TP, Kuznetsov BB, Kostrikina NA, Bonch-Osmolovskaya EA (2000) Thermanaerovibrio velox sp. nov., a new anaerobic, thermophilic, organotrophic bacterium that reduces elemental sulfur, and emended description of the genus Thermanaerovibrio. Int J Syst Evol Microbiol 50:1287–1295

    Article  CAS  PubMed  Google Scholar 

  6. Hugenholtz P, Hooper SD, Kyrpides NC (2009) Synergistetes. Environ Microbiol 11:1327–1329

    Article  PubMed  Google Scholar 

  7. Allison MJ, Mayberry WR, McSweeney CS, Stahl DA (1992) Synergistes jonesii, gen. nov., sp. nov.: a rumen bacterium that degrades toxic pyridinediols. Syst Appl Microbiol 15:522–529

    Article  CAS  Google Scholar 

  8. Rees GN, Patel BKC, Grassia GS, Sheeny AJ (1997) Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel, thermophilic bacterium which ferments citrate. Int J Syst Evol Microbiol 47:150–154

    CAS  Google Scholar 

  9. Jumas-Bilak E, Carlier JP, Jean-Pierre J, Citron D, Bernard K, Damay A, Gay B, Teyssier C, Campos J, Marchandin H (2007) Jonquetella anthropi gen. nov., sp. nov., the first member of the candidate phylum ‘Synergistetes’ isolated from man. Int J Syst Evol Microbiol 57:2743–2748

    Article  CAS  PubMed  Google Scholar 

  10. Looft T, Levine UY, Stanton TB (2013) Cloacibacillus porcurum sp. nov., a mucin-degrading bacterium from the swine intestinal tract and emended description of the genus Cloacibacillus. Int J Syst Evol Microbiol 63:1960–1966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Menes RJ, Muxi L (2002) Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide-fermenting bacterium that uses crotonate as an electron acceptor, and emended description of the genus Anaerobaculum. Int J Syst Evol Microbiol 52:157–164

    Article  CAS  PubMed  Google Scholar 

  12. Plugge CM, Stams AJM (2001) Arginine catabolism by Thermanaerovibrio acidaminovorans. FEMS Microbiol Lett 195:259–262

    Article  CAS  PubMed  Google Scholar 

  13. McSweeney CS, Allison MJ, Mackie RI (1993) Amino acid utilization by the ruminal bacterium Synergistes jonesii strain 78-1. Arch Microbiol 159:131–135

    Article  Google Scholar 

  14. Adams CJ, Redmond MC, Valentine DL (2006) Pure-culture growth of fermentative bacteria, facilitated by H2 removal: bioenergetics and H2 production. Appl Environ Microbiol 72:1079–1085

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Soboh B, Linder D, Hedderich R (2004) A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongenesis. Microbiology 150:2451–2463

    Article  CAS  PubMed  Google Scholar 

  16. Dahle H, Birkeland NK (2006) Thermovirga lienii gen. nov., sp. nov., a novel moderately thermophilic, anaerobic, amino-acid-degrading bacterium isolated from a North Sea oil well. Int J Syst Evol Microbiol 56:1539–1545

    Article  CAS  PubMed  Google Scholar 

  17. Magot M, Ravot G, Campaignolle X, Ollivier B, Patel BKC, Fardeau ML, Thomas P, Crolet JL, Garcia JL (1997) Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic thiosulfate-reducing bacterium from corroding offshore oil wells. Int J Syst Evol Microbiol 47:818–824

    CAS  Google Scholar 

  18. Surkov AV, Dubinina GA, Lysenko AM, Glockner FO, Kuever J (2001) Dethiosulfovibrio russensis sp. nov., Dethiosulfovibrio marinus sp. nov. and Dethiosulfovibrio acidaminovorans sp. nov., novel anaerobic, thiosulfate- and sulfur-reducing bacteria isolated from ‘Thiodendron’ sulfur mats in different saline environments. Int J Syst Evol Microbiol 51:327–337

    Article  CAS  PubMed  Google Scholar 

  19. Davis CK, Webb RI, Sly LI, Denman SE, McSweeney CS (2012) Isolation and survey of novel fluoroacetate-degrading bacteria belonging to the phylum Synergistetes. FEMS Microbiol Ecol 80:671–684

    Article  CAS  PubMed  Google Scholar 

  20. Twigg LE, Wright GR, Potts MD (1999) Fluoroacetate content of Gastrolobium brevipes in Central Australia. Aust J Bot 47:877–880

    Article  CAS  Google Scholar 

  21. Twigg LE, King DR (1991) The impact of fluoroacetate-bearing vegetation on native Australian fauna: a review. Oikos 61:412–430

    Article  CAS  Google Scholar 

  22. Robison WH (1970) Acute toxicity of sodium monofluoroacetate to cattle. J Wildl Manag 34:647–648

    Article  CAS  Google Scholar 

  23. Cohen SA, Michaud DP (1993) Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysates amino acids via high performance liquid chromatography. Anal Biochem 211:279–287

    Article  CAS  PubMed  Google Scholar 

  24. Meltzer NM, Tous GI, Gruber S, Stein S (1987) Gas-phase hydrolysis of proteins and peptides. Anal Biochem 160:356–361

    Article  CAS  PubMed  Google Scholar 

  25. Rada V, Petr J (2000) A new selective medium for the isolation of glucose non-fermenting bifidobacteria from hen caeca. J Microbiol Methods 43:127–132

    Article  CAS  PubMed  Google Scholar 

  26. BD Biosciences (2006) Advanced bioprocessing. BD Bionutrients technical manual, 3rd edn. BD Biosciences, Sparks

    Google Scholar 

  27. Atasoglu C, Valdes C, Walker ND, Newbold JC, Wallace JR (1998) De novo synthesis of amino acids by the ruminal bacteria Prevotella bryantii B14, Selenomonas ruminantium HD4, and Streptococcus bovis ES1. Appl Environ Microbiol 64:2836–2843

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Chen G, Strobel HJ, Russell JB, Sniffen CJ (1987) Effect of hydrophobicity on utilization of peptides by ruminal bacteria in vitro. Appl Environ Microbiol 53:2021–2025

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Baena S, Fardeau ML, Labat M, Ollivier B, Garcia JL, Patel BKC (2000) Aminobacterium mobile sp. nov., a new anaerobic amino-acid-degrading bacterium. Int J Syst Evol Microbiol 50:259–264

    Article  CAS  PubMed  Google Scholar 

  30. Garcia JL (1990) Taxonomy and ecology of methanogens. FEMS Microbiol Rev 87:297–308

    Article  Google Scholar 

  31. Savant DV, Shouche YS, Prakash S, Ranade DR (2002) Methanobrevibacter acididurans sp. nov., a novel methanogen from a sour anaerobic digester. Int J Syst Evol Microbiol 52:1081–1087

    CAS  PubMed  Google Scholar 

  32. Lai M-C, Shu C-M, Chen S-C, Lai L-J, Chiou M-S, Hua JJ (2000) Methanosarcina mazei strain O1M9704, methanogen with novel tubule isolated from estuarine environment. Curr Microbiol 41:15–20

    Article  CAS  PubMed  Google Scholar 

  33. Maestrojuan GM, Boone DR (1991) Characterization of Methanosarcina barkeri MST and 227, Methanosarcina mazei S-6T, and Methanosarcina vacuolata Z-761T. Int J Syst Evol Microbiol 41:267–274

    Google Scholar 

  34. Samuel BS, Hansen EE, Mancester JK, Coutinho PM, Henrissat B, Fulton R, Latreille P, Kim K, Wilson RK, Gordon JI (2007) Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci U S A 104:10643–10648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Bartlett GR, Barron ESG (1947) The effect of fluoroacetate on enzymes and on tissue metabolism. Its use for the study of the oxidation pathway of pyruvate metabolism. J Biol Chem 170:67–82

    CAS  Google Scholar 

  36. Kalnitsky G, Guzman Barron ES (1947) The effect of fluoroacetate on the metabolism of yeast and bacteria. J Biol Chem 170:83–95

    CAS  Google Scholar 

  37. Winfrey MR, Zeikus JG (1979) Anaerobic metabolism of immediate methane precursors in Lake Mendota. Appl Environ Microbiol 37:244–253

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Goodwin S, Giraldo-Gomez E, Mobarry B, Switzenbaum MS (1991) Comparison of diffusion and reaction rates in anaerobic microbial aggregates. Microb Ecol 22:161–174

    Article  CAS  PubMed  Google Scholar 

  39. Iannotti EL, Kafhewitz D, Wolin MJ, Bryant MP (1973) Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H2. J Bacteriol 114:1231–1240

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Robert C, Del’Homme C, Bernalier-Donadille A (2001) Interspecies H2 transfer in cellulose degradation between fibrolytic bacteria and H2-utilizing microorganisms from the human colon. FEMS Microbiol Ecol 205:209–214

    Article  CAS  Google Scholar 

  41. Rychlik JL, May T (2000) The effect of a methanogen, Methanobrevibacter smithii, on the growth rate, organic acid production, and specific ATP activity of three predominant ruminal cellulolytic bacteria. Curr Microbiol 40:176–180

    Article  CAS  PubMed  Google Scholar 

  42. Scheifinger CC, Lineham B, Wolin MJ (1975) H2 production of Selenomonas ruminatium in the absence and presence of methanogenic bacteria. Appl Microbiol 29:480–483

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Wildenauer FX, Winter J (1986) Fermentation of isoleucine and arginine by pure and syntrophic cultures of Clostridium sporenges. FEMS Microbiol Lett 38:373–379

    Article  CAS  Google Scholar 

  44. Stams AJM (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenhoek 66:271–294

    Article  CAS  PubMed  Google Scholar 

  45. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed Central  CAS  PubMed  Google Scholar 

  46. van de Pas BA, Jansen S, Dijkema C, Schraa G, De Vos WM, Stams AJM (2001) Energy yield of respiration on chloroaromatic compounds in Desulfitobacterium dehalogenans. Appl Environ Microbiol 67:3958–3963

    Article  PubMed Central  PubMed  Google Scholar 

  47. Mohn WW, Tiedje JM (1991) Evidence for chemiosmotic coupling of reductive dechlorination and ATP synthesis in Desulfomonile tiedjei. Arch Microbiol 157:1–6

    Article  CAS  Google Scholar 

  48. Schumacher W, Holliger C (1996) The proton electron ratio of the menaquinone-dependent electron transport from dihydrogen to tetrachloroethene in ‘Dehalobacter restrictus’. J Bacteriol 178:2328–2333

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Stickland L (1934) Studies in the metabolism of the strict anaerobes (genus Clostridium): the chemical reactions by which Cl. sporogenes obtains its energy. Biochem J 28:1746–1759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Diaz-Cardenas C, Lopez G, Patel BKC, Baena S (2010) Dethiosulfovibrio salsuginis sp. nov., an anaerobic, slightly halophilic bacterium isolated from a saline spring. Int J Syst Evol Microbiol 60:850–853

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank E. J. Gagen for comments on the manuscripts. The research was partly funded by the Commonwealth Science and Industrial Research Organization (CSIRO) Office of Chief Executive postgraduate scholarship program and Meat and Livestock Australia. PH was supported by an ARC Discovery Outstanding Research Award (ARC-DP120103498).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. McSweeney.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leong, L.E.X., Denman, S.E., Hugenholtz, P. et al. Amino Acid and Peptide Utilization Profiles of the Fluoroacetate-Degrading Bacterium Synergistetes Strain MFA1 Under Varying Conditions. Microb Ecol 71, 494–504 (2016). https://doi.org/10.1007/s00248-015-0641-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0641-4

Keywords

Navigation