Skip to main content

Advertisement

Log in

Effects of Forest Management Practices in Temperate Beech Forests on Bacterial and Fungal Communities Involved in Leaf Litter Degradation

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Forest management practices (FMPs) significantly influence important ecological processes and services in Central European forests, such as leaf litter decomposition and nutrient cycling. Changes in leaf litter diversity, and thus, its quality as well as microbial community structure and function induced by different FMPs were hypothesized to be the main drivers causing shifts in decomposition rates and nutrient release in managed forests. In a litterbag experiment lasting 473 days, we aimed to investigate the effects of FMPs (even-aged timber management, selective logging and unmanaged) on bacterial and fungal communities involved in leaf litter degradation over time. Our results showed that microbial communities in leaf litter were strongly influenced by both FMPs and sampling date. The results from nonmetric multidimensional scaling (NMDS) ordination revealed distinct patterns of bacterial and fungal successions over time in leaf litter. We demonstrated that FMPs and sampling dates can influence a range of factors, including leaf litter quality, microbial macronutrients, and pH, which significantly correlate with microbial community successions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. IPCC (2003) Good practice guidance for land use, land use change and forestry. The Institute for Global Environmental Strategies (IGES) for the Intergovernmental Panel on Climate Change, Kanagawa

  2. Torras O, Saura S (2008) Effects of silvicultural treatments on forest biodiversity indicators in the Mediterranean. For Ecol Manag 255:3322–3330

    Article  Google Scholar 

  3. Luyssaert S, Hessenmöller D, von Lupke N, Kaiser S, Schulze E-D (2011) Quantifying land use and disturbance intensity in forestry, based on the self-thinning relationship. Ecol Appl 21:3272–3284

    Article  Google Scholar 

  4. Purahong W, Hoppe B, Kahl T, Schloter M, Bauhus J, Schulze ED, Buscot F, Krüger D (2014) Changes within a single land-use category alter microbial diversity and community structure: molecular evidence from wood-inhabiting fungi in forest ecosystems. J Environ Manag 139:109–119

    Article  CAS  Google Scholar 

  5. Purahong W, Kahl T, Schloter M, Bauhus J, Buscot F, Krüger D (2014) Comparing fungal richness and community composition in coarse woody debris in Central European beech forests under three types of management. Mycol Prog 13:959–964

    Article  Google Scholar 

  6. Stall C, Fuller RD, Mihuc TB, Jones J, Woodcock TS (2008) Nitrogen cycling and dynamics in upland managed and preserved watersheds of the Adirondack Mountains, New York. Sci Discipulorum 3:11–20

    Google Scholar 

  7. Purahong W, Kapturska D, Pecyna MJ, Schloter M, Buscot F, Hofrichter M, Krüger D (2014) Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: a case study from Central European forests. PLoS ONE 9(4):e93700. doi:10.1371/journal.pone.0093700

    Article  PubMed Central  PubMed  Google Scholar 

  8. Santa-Regina I, Tarazona T (1995) Dynamics of litter decomposition in two Mediterranean climatic zone forests of the Sierra de la Demanda, Burgos, Spain. Arid Soil Res Rehab 9:201–207

    Article  CAS  Google Scholar 

  9. Pérez-Harguindeguy N, Díaz S, Cornelissen JHC, Vendramini F, Cabido M, Castellanos A (2000) Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218:21–30

    Article  Google Scholar 

  10. Santa-Regina I, Tarazona T (2001) Nutrient cycling in a natural beech forest and adjacent planted pine in northern Spain. Forestry 74:11–28

    Article  Google Scholar 

  11. Smith VC, Bradford MA (2003) Do non-additive effects on decomposition in litter-mix experiments result from differences in resource quality between litters? Oikos 102:235–242

    Article  Google Scholar 

  12. Chapman SK, Newman GS, Hart SC, Schweitzer JA, Koch GW (2013) Leaf litter mixtures alter microbial community development: mechanisms for non-additive effects in litter decomposition. PLoS ONE 8(4):e62671. doi:10.1371/journal.pone.0062671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. FAO (1999) Forest management in temperate and boreal forests: current practices and the scope for implementing sustainable forest management. Forestry Policy and Planning Division, Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  14. Hessenmöller D, Nieschulze J, von Lüpke N, Schulze ED (2011) Identification of forest management types from ground-based and remotely sensed variables and the effects of forest management on forest structure and composition. Forstarchiv 82:171–183

    Google Scholar 

  15. Frossard A, Gerull L, Mutz M, Gessner MO (2012) Fungal importance extends beyond litter decomposition in experimental early-successional streams. Environ Microbiol 14:2971–2983

    Article  PubMed  Google Scholar 

  16. Jones SE, Shade A, McMahon KD, Kent AD (2007) Comparison of primer sets for use in automated ribosomal internal spacer analysis of aquatic bacterial communities: an ecological perspective. Appl Environ Microbiol 73:659–662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Corneo PE, Pellegrini A, Cappellin L, Roncador M, Chierici M, Gessler C, Pertot I (2013) Microbial community structure in vineyard soils across altitudinal gradients and in different seasons. FEMS Microbiol Ecol 84:588–602

    Article  CAS  PubMed  Google Scholar 

  18. Gobet A, Boetius A, Ramette A (2013) Ecological coherence of diversity patterns derived from classical fingerprinting and next generation sequencing techniques. Environ Microbiol. doi:10.1111/1462-2920.12308

    PubMed Central  PubMed  Google Scholar 

  19. Weig A, Peršoh D, Werner S, Betzlbacher A, Rambold G (2013) Diagnostic assessment of mycodiversity in environmental samples by fungal ITS1 rDNA length polymorphism. Mycol Prog 12:719–725

    Article  Google Scholar 

  20. Yannarell AC, Menning SE, Beck AM (2014) Influence of shrub encroachment on the soil microbial community composition of remnant hill prairies. Microb Ecol 67:897–906

    Article  PubMed Central  PubMed  Google Scholar 

  21. Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A et al (2010) Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol 11:473–485

    Article  Google Scholar 

  22. Naether A, Foesel BU, Naegele V, Wüst PK, Weinert J et al (2012) Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils. Appl Environ Microbiol 78:7398–7406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. HBU: Handbook of soil analyses (HBU) (2005) Soil quality—determination of pH, ISO 10390. Beuth Verlag GmbH, Berlin

    Google Scholar 

  24. Effland MJ (1977) Modified procedure to determine acid insoluble lignin in wood and pulp. TAPPI 60:143–144

    CAS  Google Scholar 

  25. Liers C, Arnstadt T, Ullrich R, Hofrichter M (2011) Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood. FEMS Microbiol Ecol 78:91–102

    Article  CAS  PubMed  Google Scholar 

  26. Raiskila S, Pulkkinen M, Laakso T, Fagerstedt K, Löija M et al (2007) FTIR spectroscopic prediction of Klason and acid soluble lignin variation in Norway spruce cutting clones. Silva Fenn 41:351–371

    Article  Google Scholar 

  27. Green JL, Holmes AJ, Westoby M, Oliver I, Briscoe D, Dangerfield M, Gillings M, Beattie AJ (2004) Spatial scaling of microbial eukaryote diversity. Nature 432:747–750

    Article  CAS  PubMed  Google Scholar 

  28. Borneman J, Triplett EW (1997) Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl Environ Microbiol 63:2647–2653

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Purahong W, Stempfhuber B, Lentendu G, Francioli D , Reitz T, Buscot F, Schloter M, Krüger D (2015) Influence of commonly used primer systems on automated ribosomal intergenic spacer analysis of bacterial communities in environmental samples. PLoS ONE. doi:10.1371/journal.pone.0118967

  30. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for Basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  31. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocol: a guide to methods and applications, eds. Innis MA, Gelfand DH, Sninsky JJ, White TJ.  Academic Press, New York, USA, pp 315–322

  32. Ramette A (2009) Quantitative community fingerprinting methods for estimating the abundance of operational taxonomic units in natural microbial communities. Appl Environ Microbiol 75:2495–2505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Olson JS (1963) Energy stores and the balance of producers and decomposers in ecological systems. Ecology 44:322–331

    Article  Google Scholar 

  34. Yannarell AC, Menning SE, Beck AM (2014) Influence of shrub encroachment on the soil microbial community composition of remnant hill prairies. Microb Ecol 67:897–906

    Article  PubMed Central  PubMed  Google Scholar 

  35. Oksanen J (2013) Multivariate analysis of ecological communities in R: vegan tutorial. http://cran.r-project.org

  36. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  37. Berg B, Ekbohm G (1991) Litter mass loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest VII. Can J Bot 69:1449–1456

    Article  Google Scholar 

  38. Wardle DA, Yates GW, Barker GM, Bonner KI (2006) The influence of plant litter diversity on decomposer abundance and diversity. Soil Biol Biochem 38:1052–1062

    Article  CAS  Google Scholar 

  39. Aubert M, Margerie P, Trap J, Bureau F (2010) Aboveground-belowground relationships in temperate forests: plant litter composes and microbiota orchestrates. For Ecol Manag 259:563–572

    Article  Google Scholar 

  40. Chapman SK, Newman GS (2010) Biodiversity at the plant soil interface: microbial abundance and community structure respond to litter mixing. Oecologia 162:763–769

    Article  PubMed  Google Scholar 

  41. Lunghini D, Granito VM, Di Lonardo DP, Maggi O, Persiani AM (2013) Fungal diversity of saprotrophic litter fungi in a Mediterranean maquis environment. Mycologia 105:1499–1515

    Article  CAS  PubMed  Google Scholar 

  42. Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–24643

    Article  Google Scholar 

  43. Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218

    Article  Google Scholar 

  44. De Marco A, Meola A, Esposito F, Giordano M, Virzo de Santo A (2011) Non-additive effects of litter mixtures on decomposition of leaf litters in a Mediterranean maquis. Plant Soil 344:305–317

    Article  CAS  Google Scholar 

  45. Ma S, Concilio A, Oakley B, North M, Chen J (2010) Spatial variability in microclimate in a mixed-conifer forest before and after thinning and burning treatments. For Ecol Manag 259:904–915

    Article  Google Scholar 

  46. Kerekes J, Kaspari M, Stevenson B, Nilsson RH, Hartmann M, Amend A, Bruns TD (2013) Nutrient enrichment increased species richness of leaf litter fungal assemblages in a tropical forest. Mol Ecol. doi:10.1111/mec.12259

    PubMed  Google Scholar 

  47. Purahong W, Schloter M, Pecyna JM, Kapturska D, Däumlich V, Mital S, Buscot F, Hofrichter M, Gutknecht LMJ, Krüger D (2014) Uncoupling of microbial community structure and function in decomposing litter across beech forest ecosystems in Central Europe. Sci Rep 4:7014. doi:10.1038/srep07014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  PubMed  Google Scholar 

  49. Prescott LM, Harley JP, Klein DA (1999) Microbiology, 4 edn. McGraw-Hill Higher Education

  50. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  PubMed  Google Scholar 

  51. Ullrich R, Hofrichter M (2007) Enzymatic hydroxylation of aromatic compounds. Cell Mol Life Sci 64:271–293

    Article  CAS  PubMed  Google Scholar 

  52. Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb Technol 30:454–466

    Article  CAS  Google Scholar 

  53. Martínez AT, Ruiz-Dueñas FJ, Martínez MJ, Del Rio JC, Gutierrez A (2009) Enzymatic delignification of plant cell wall: from nature to mill. Curr Opin Biotechnol 20:348–357

    Article  PubMed  Google Scholar 

  54. Monties B, Fukushima K (2001) Occurrence, function, and biosynthesis of lignins. In: Steinbüchel A, Hofrichter M (eds) Biopolymers. Vol. 1—Lignin, humic substances, and coal. Wiley-VCH, Weinheim, Germany, pp 1–64

    Google Scholar 

  55. Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  PubMed  Google Scholar 

  56. Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87:871–897

    Article  CAS  PubMed  Google Scholar 

  57. Lundell TK, Mäkelä MR, Hildén K (2010) Lignin-modifying enzymes in filamentous basidiomycetes: ecological, functional and phylogenetic review. J Basic Microbiol 50:1–16

    Article  Google Scholar 

Download references

Acknowledgments

Our work was funded, in part, by contributing projects to the DFG Priority Program 1374 on “Infrastructure-Biodiversity-Exploratories” (BU 941/17-1, KR 3587/1-1, KR 3587/3-2, SCHL 446/13-2, HO 1961/4-1, and HO 1961/5-2). We thank the managers of the three exploratories, Swen Renner, Sonja Gockel, Kerstin Wiesner, and Martin Gorke, for their work in maintaining the plot and project infrastructure; Simone Pfeiffer and Christiane Fischer for providing support through the central office; Michael Owonibi for managing the central database; and Markus Fischer, Eduard Linsenmair, Dominik Hessenmöller, Jens Nieschulze, Daniel Prati, Ingo Schöning, Ernst-Detlef Schulze, Wolfgang W. Weisser, and the late Elisabeth Kalko for their role in setting up the Biodiversity Exploratories project. We thank Jessica L. M. Gutknecht (UMN-Twin Cities) for discussion. 

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Witoon Purahong or François Buscot.

Additional information

Witoon Purahong, Danuta Kapturska, Marek J. Pecyna and Dirk Krüger contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1.19 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purahong, W., Kapturska, D., Pecyna, M.J. et al. Effects of Forest Management Practices in Temperate Beech Forests on Bacterial and Fungal Communities Involved in Leaf Litter Degradation. Microb Ecol 69, 905–913 (2015). https://doi.org/10.1007/s00248-015-0585-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0585-8

Keywords

Navigation