Skip to main content

Advertisement

Log in

Soil Fungal Communities Respond to Grassland Plant Community Richness and Soil Edaphics

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Fungal communities in soil have significant influences on terrestrial ecosystem dynamics, yet our understanding of the drivers of fungal diversity and community structure in soil is limited. Fungal communities associated with the rhizosphere of four native perennial grassland plant species, two legumes and two grasses, grown in monoculture and polyculture in a long-term field experiment were characterized. Reference databases were developed for, and amplicon libraries sequenced from, multiple-copy rRNA and single-copy protein-coding loci. Clustering and alignment-based pipelines were utilized to evaluate differences in fungal community structure and diversity in response to plant host, plant community richness, and soil edaphics. Fungal diversity increased in the rhizosphere of plants growing in polyculture plant communities as compared to monoculture plant communities. Fungal community structure was differentiated between legumes and grasses growing in monoculture but not in polyculture. To specifically monitor fungi in the genus Fusarium in the soil, the protein-coding locus was used to increase phylogenetic resolution and enrich for this taxon. These data show that fungal community richness and structure are strongly linked with plant community dynamics and associated soil edaphic characteristics in these grassland soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Blackwell M (2011) The Fungi: 1, 2, 3…5.1 million species? Am J Bot 98:426–438

    Article  PubMed  Google Scholar 

  2. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432

    Article  Google Scholar 

  3. Schoch CL, Sung GH, López-Giráldez F et al (2009) The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 58:224–239

    Article  CAS  PubMed  Google Scholar 

  4. Blackwell M, Hibbett DS, Taylor JW, Spatafora JW (2006) Research coordination networks: a phylogeny for kingdom Fungi (Deep Hypha). Mycologia 98:829–837

    Article  PubMed  Google Scholar 

  5. James TY, Kauff F, Schoch CL et al (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822

    Article  CAS  PubMed  Google Scholar 

  6. Lutzoni F, Kauff F, Cox CJ et al (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1446–1480

    Article  PubMed  Google Scholar 

  7. Jumpponen A (2011) Analysis of ribosomal RNA indicates seasonal fungal community dynamics in Andropogon gerardii roots. Mycorrhiza 21:453–464

    Article  CAS  PubMed  Google Scholar 

  8. Jumpponen A, Jones KL, Blair J (2010) Vertical distribution of fungal communities in tallgrass prairie soil. Mycologia 102:1027–1041

    Article  PubMed  Google Scholar 

  9. Horwath W (2007) Carbon cycling and formation of soil organic matter. In: Eldor P (ed) Soil microbiology, ecology, and biochemistry, 3rd edn. Academic, USA, pp 303–339

    Chapter  Google Scholar 

  10. Amend AS, Seifert KA, Samson R, Bruns TD (2010) Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc Natl Acad Sci U S A 107:13748–13753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C, Fitter AH, Helgason T (2011) Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytol 190:794–804

    Article  CAS  PubMed  Google Scholar 

  12. Jumpponen A, Jones KL (2010) Seasonally dynamic fungal communities in the Quercus macrocarpa phyllosphere differ between urban and nonurban environments. New Phytol 186:496–513

    Article  CAS  PubMed  Google Scholar 

  13. Porter TM, Schadt CW, Rizvi L, Martin AP, Schmidt SK, Scott-Denton L, Vilgalys R, Moncalvo JM (2008) Widespread occurrence and phylogenetic placement of a soil clone group adds a prominent new branch to the fungal tree of life. Mol Phylogenet Evol 46:635–644

    Article  CAS  PubMed  Google Scholar 

  14. Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301:1359–1361

    Article  CAS  PubMed  Google Scholar 

  15. Rosling A, Cox F, Cruz-Martinez K, Ihrmark K, Grelet G-A, Lindahl BD, Menkis A, James TY (2011) Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi. Science 333:876–879

    Article  CAS  PubMed  Google Scholar 

  16. Nilsson RH, Ryberg M, Kristiansson E, Abarenkov K, Larsson K-H, Kõljalg U (2006) Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS One 1:e59

    Article  PubMed Central  PubMed  Google Scholar 

  17. Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

    Article  PubMed  Google Scholar 

  18. Bridge PD, Roberts PJ, Spooner BM, Panchal G (2003) On the unreliability of published DNA sequences. New Phytol 160:43–48

    Article  CAS  Google Scholar 

  19. Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525

    Article  CAS  PubMed  Google Scholar 

  20. Michielse CB, Rep M (2009) Pathogen profile update: Fusarium oxysporum. Mol Plant Pathol 10:311–324

    Article  CAS  PubMed  Google Scholar 

  21. Murase J, Shibata M, Lee CG, Watanabe T, Asakawa S, Kimura M (2012) Incorporation of plant residue-derived carbon into the microeukaryotic community in a rice field soil revealed by DNA stable-isotope probing. FEMS Microbiol Ecol 79:371–379

    Article  CAS  PubMed  Google Scholar 

  22. Rodriguez A, Perestelo F, Carnicero A, Regalado V, Perez R, De la Fuente G, Falcon MA (1996) Degradation of natural lignins and lignocellulosic substrates by soil-inhabiting Fungi Imperfecti. FEMS Microbiol Ecol 21:213–219

    Article  CAS  Google Scholar 

  23. Herrera ML, Vallor AC, Gelfond JA, Patterson TF, Wickes BL (2009) Strain-dependent variation in 18S ribosomal DNA copy numbers in Aspergillus fumigatus. J Clin Microbiol 47:1325–1332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. O’Donnell K, Sutton DA, Fothergill A, McCarthy D, Rinaldi MG, Brandt ME, Zhang N, Geiser DM (2008) Molecular phylogenetic diversity, multilocus haplotype nomenclature, and in vitro antifungal resistance within the Fusarium solani species complex. J Clin Microbiol 46:2477–2490

    Article  PubMed Central  PubMed  Google Scholar 

  25. Arenz BE, Blanchette RA (2011) Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea region and McMurdo Dry Valleys. Soil Biol Biochem 43:308–315

    Article  CAS  Google Scholar 

  26. Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Sieman E (1997) The influence of functional diversity and composition on ecosystem processes. Sci 277:1300–1302

    Article  CAS  Google Scholar 

  27. Bakker MG, Tu ZJ, Bradeen JM, Kinkel LL (2012) Implications of pyrosequencing error correction for biological data interpretation. PLoS One 7:e44357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. O’Donnell K, Sarver BA, Brandt M et al (2007) Phylogenetic diversity and microsphere array-based genotyping of human pathogenic fusaria, including isolates from the multistate contact lens-associated U.S. keratitis outbreaks of 2005 and 2006. J Clin Microbiol 45:2235–2248

    Article  PubMed Central  PubMed  Google Scholar 

  29. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6(12):e27310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Quince C, Lanzén A, Curtis TP, Davenport RJ, Hall N, Head IM, Read LF, Sloan WT (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 6:639–641

    Article  CAS  PubMed  Google Scholar 

  32. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Stajich JE, Block D, Boulez K et al (2002) The BioPerl toolkit: Perl modules for the life sciences. Genome Res 12:1611–1618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Dick JM (2008) Calculation of the relative metastabilities of proteins using the CHNOSZ software package. Geochem T 9:10

    Article  Google Scholar 

  35. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  37. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

  38. Oksanen J, Blanchet G, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) Vegan: community ecology package. R package version 2.0–2.http://CRAN.R-project.org/package=vegan

  39. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  40. Peay KG, Baraloto C, Fine PVA (2013) Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J 7:1852–1861

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Waldrop MP, Zak DR, Blackwood CB, Curtis CD, Tilman D (2006) Resource availability controls fungal diversity across a plant diversity gradient. Ecol Lett 9:1127–1135

    Article  PubMed  Google Scholar 

  42. McGuire KL, Fierer N, Bateman C, Treseder KK, Turner BL (2012) Fungal community composition in neotropical rain forests: the influence of tree diversity and precipitation. Microb Ecol 63:804–812

    Article  PubMed  Google Scholar 

  43. Bakker MG, Bradeen JM, Kinkel LL (2013) Effects of plant host species and plant community richness on streptomycete community structure. FEMS Microbiol Ecol 83:596–606

    Article  CAS  PubMed  Google Scholar 

  44. Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  45. Scherling C, Roscher C, Giavalisco P, Schulze E-D, Weckwerth W (2010) Metabolomics unravel contrasting effects of biodiversity on the performance of individual plant species. PLoS One 5:e12569

    Article  PubMed Central  PubMed  Google Scholar 

  46. Balmas V, Migheli Q, Scherm B, Garau P, O’Donnell K, Ceccherelli G, Kang S, Geiser DM (2010) Multilocus phylogenetics show high levels of endemic fusaria inhabiting Sardinian soils (Tyrrhenian Islands). Mycologia 102:803–812

    Article  PubMed  Google Scholar 

  47. Harrow SA, Farrokhi-Nejad R, Pitman AR, Scott IAW, Bentley A, Hide C, Cromey MG (2010) Characterization of New Zealand Fusarium populations using a polyphasic approach differentiates the F. avenaceum/F. acuminatum/F. tricinctum species complex in cereal and grassland systems. Fungal Biol 114:293–311

    Article  CAS  PubMed  Google Scholar 

  48. Amend AS, Seifert KA, Bruns TD (2010) Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol Ecol 19:5555–5565

    Article  CAS  PubMed  Google Scholar 

  49. Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2009) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12:118–123

    Article  PubMed  Google Scholar 

  50. O’Donnell K, Rooney AP, Proctor RH et al (2013) Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genet Biol 52:20–31

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Joey Spatafora, Frank Kauff, François Lutzoni, and David Geiser for supplying a subset of the sequences used as references in this study, Georgiana May for supplying 454 compatible LSU primers, Chris Wright at the Roy J. Carver Sequencing Center, Dave Tilman at the Cedar Creek Ecosystem Science Reserve LTER, as well as Matt Bakker, Dan Schlatter, and Lindsey Otto-Hanson for their contributions to soil sampling and processing. We also acknowledge the comments from anonymous reviewers which helped improve the quality and clarity of this manuscript. This project was supported by Agriculture and Food Research Initiative Competitive Grant no. 2011-67019-30200 from the USDA National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Corby Kistler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LeBlanc, N., Kinkel, L.L. & Kistler, H.C. Soil Fungal Communities Respond to Grassland Plant Community Richness and Soil Edaphics. Microb Ecol 70, 188–195 (2015). https://doi.org/10.1007/s00248-014-0531-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0531-1

Keywords

Navigation