Skip to main content
Log in

Wastewater Treatment Plant Effluents Change Abundance and Composition of Ammonia-Oxidizing Microorganisms in Mediterranean Urban Stream Biofilms

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Streams affected by wastewater treatment plant (WWTP) effluents are hotspots of nitrification. We analyzed the influence of WWTP inputs on the abundance, distribution, and composition of epilithic ammonia-oxidizing (AO) assemblages in five Mediterranean urban streams by qPCR and amoA gene cloning and sequencing of both archaea (AOA) and bacteria (AOB). The effluents significantly modified stream chemical parameters, and changes in longitudinal profiles of both NH4 + and NO3 indicated stimulated nitrification activity. WWTP effluents were an allocthonous source of both AOA, essentially from the Nitrosotalea cluster, and mostly of AOB, mainly Nitrosomonas oligotropha, Nitrosomonas communis, and Nitrosospira spp. changing the relative abundance and the natural composition of AO assemblages. Under natural conditions, Nitrososphaera and Nitrosopumilus AOA dominated AO assemblages, and AOB were barely detected. After the WWTP perturbation, epilithic AOB increased by orders of magnitude whereas AOA did not show quantitative changes but a shift in population composition to dominance of Nitrosotalea spp. The foraneous AOB successfully settled in downstream biofilms and probably carried out most of the nitrification activity. Nitrosotalea were only observed downstream and only in biofilms exposed to either darkness or low irradiance. In addition to other potential environmental limitations for AOA distribution, this result suggests in situ photosensitivity as previously reported for Nitrosotalea under laboratory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Peterson BJ, Wollheim WM, Mulholland PJ, Webster JR, Meyer JL, Tank JL, Martí E, Boden WB, Valett HM, Hershey AE, McDowell WH, Dodds WK, Hamilton SK, Gregory S, Morrall DD (2001) Control of nitrogen export from watersheds by headwater streams. Science 292:86–91

    Article  CAS  PubMed  Google Scholar 

  2. Martí E, Aumatell J, Gode L, Poch M, Sabater F (2004) Nutrient retention efficiency in streams receiving inputs from wastewater treatment plants. J Environ Qual 33:285–293

    Article  PubMed  Google Scholar 

  3. Merseburger G, Martí E, Sabater F (2005) Net changes in nutrient concentrations below a point source input in two streams draining catchments with contrasting land uses. Sci Tot Environ 347:217–229

    Article  CAS  Google Scholar 

  4. Martí E, Riera J, Sabater F (2010) Effects of wastewater treatment plants on stream nutrient dynamics under water scarcity conditions. In: Sabater S, Barceló D (eds) Water Scarcity in the Mediterranean. Springer Berlin Heidelberg, Berlin, pp 173–195

    Google Scholar 

  5. Ribot M, Martí E, von Schiller D, Sabater F, Daims H, Battin TJ (2012) Nitrogen processing and the role of epilithic biofilms downstream of a wastewater treatment plant. Freshwater Sci 31:1057–1069. doi:10.1899/11-161.1

    Article  Google Scholar 

  6. Merbt SN, Auguet J-C, Casamayor EO, Martı E (2011) Biofilm recovery in a wastewater treatment plant-influenced stream and spatial segregation of ammonia-oxidizing microbial populations. Limnol Oceanogr 56:1054–1064. doi:10.4319/lo.2011.56.3.1054

    Article  CAS  Google Scholar 

  7. Teissier S, Torre M, Delmas F, Garabétian F (2007) Detailing biogeochemical N budgets in riverine epilithic biofilms. JNABS 26:178–190

    Article  Google Scholar 

  8. Lock M, Wallace R, Costerton J, Ventullo R, Charlton S (1984) River epilithon: toward a structural-functional model. Oikos 10–22

  9. Battin TJ, Kaplan LA, Newbold JD, Cheng X, Hansen C (2003) Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl Environ Microbiol 69:5443–5452. doi:10.1128/aem.69.9.5443-5452.2003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. PNAS 102:14683–14688. doi:10.1073/pnas.0506625102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Rotthauwe J-H, Witzel K-P, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia oxidizing populations. Appl Environ Microbiol 63:4704–4712

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Fernàndez-Guerra A, Casamayor EO (2012) Habitat-associated phylogenetic community patterns of microbial ammonia oxidizers. PLoS ONE 7:e47330

    Article  PubMed Central  PubMed  Google Scholar 

  13. Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461:976–979

    Article  CAS  PubMed  Google Scholar 

  14. Merbt SN, Stahl DA, Casamayor EO, Martí E, Nicol GW, Prosser JI (2012) Differential photoinhibition of bacterial and archaeal ammonia oxidation. FEMS Microbiol Lett 327:41–46. doi:10.1111/j.1574-6968.2011.02457.x

    Article  CAS  PubMed  Google Scholar 

  15. Hall RO, Bernhardt ES, Likens GE (2002) Relating nutrient uptake with transient storage in forested mountain streams. Limnol Oceanogr 47:255–265

    Article  CAS  Google Scholar 

  16. von Schiller D, Martí E, Riera JL, Ribot M, Argerich A, Fonollà P, Sabater F (2008) Inter-annual, annual, and seasonal variation of P and N retention in a perennial and an intermittent stream. Ecosystems 11:670–687

    Article  Google Scholar 

  17. Webster J, Valett H (2006) Solute dynamics. In: Hauer FR, Lamberti GA (eds) Methods in stream ecology. Academic Press, San Diego, pp 169–185

    Google Scholar 

  18. Epstein SS, Rossel J (1995) Enumeration of sandy sediment bacteria: search for optimal protocol. Mar Ecol Prog Ser 117:289–298

    Article  Google Scholar 

  19. Hervàs A, Casamayor EO (2009) High similarity between bacterioneuston and airborne bacterial community compositions in a high mountain lake area. FEMS Microbiol Ecol 67:219–228

  20. Ferrera I, Massana R, Casamayor EO, Balagué V, Sánchez O, Pedrós-Alió C, Mas J (2004) High-diversity biofilm for the oxidation of sulfide-containing effluents. Appl Microbiol Biotech 64:726–734

  21. Hall TA (1999) BioEdit: a user-friendly biological sequencealingment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp Ser 41:95–98

    CAS  Google Scholar 

  22. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  23. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Auguet J-C, Nomokonova N, Camarero L, Casamayor EO (2011) Seasonal changes of freshwater ammonia-oxidizing archaeal assemblages and nitrogen species in oligotrophic alpine lakes. Appl Environ Microbiol 77:1937–1945. doi:10.1128/aem.01213-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297

    Article  Google Scholar 

  27. Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests M (2007) Vegan: community ecology package. R package version 1:8–5. http://cran.r-project.org/

  28. Zhang T, Jin T, Yan Q, Shao M, Wells G, Criddle C, Fang HHP (2009) Occurrence of ammonia-oxidizing Archaea in activated sludges of a laboratory scale reactor and two wastewater treatment plants. J Appl Microbiol 107:970–977

    Article  CAS  PubMed  Google Scholar 

  29. Mußmann M, Brito I, Pitcher A, Sinninghe Damsté JS, Hatzenpichler R, Richter A, Nielsen JL, Nielsen PH, Müller A, Daims H, Wagner M, Head IM (2011) Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. PNAS 108:16771–16776. doi:10.1073/pnas.1106427108

    Article  PubMed Central  PubMed  Google Scholar 

  30. Short MD, Abell GCJ, Bodrossy L, van den Akker B (2013) Application of a novel functional gene microarray to probe the functional ecology of ammonia oxidation in nitrifying activated sludge. PLoS ONE 8:e77139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bai Y, Sun Q, Wen D, Tang X (2012) Abundance of ammonia-oxidizing bacteria and archaea in industrial and domestic wastewater treatment systems. FEMS Microbiol Ecol 80:323–330. doi:10.1111/j.1574-6941.2012.01296.x

    Article  CAS  PubMed  Google Scholar 

  32. Sonthiphand P, Cejudo E, Schiff SL, Neufeld JD (2013) Wastewater effluent impacts ammonia-oxidizing prokaryotes of the Grand River, Canada. Appl Environ Microbiol 79:7454–7465. doi:10.1128/aem.02202-13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Mußmann M, Ribot M, von Schiller D, Merbt SN, Augspurger C, Karwautz C, Winkel M, Battin TJ, Martí E, Daims H (2013) Colonization of freshwater biofilms by nitrifying bacteria from activated sludge. FEMS Microbiol Ecol. doi:10.1111/1574-6941.12103

    PubMed  Google Scholar 

  34. Risgaard-Petersen N, Nicolaisen MH, Revsbech NP, Lomstein BA (2004) Competition between ammonia-oxidizing bacteria and benthic microalgae. Appl Environ Microbiol. doi:10.1128/aem.70.9.5528-5537.2004

    PubMed Central  PubMed  Google Scholar 

  35. Restrepo-Ortiz CX, Auguet J-C, Casamayor EO (2014) Targeting spatiotemporal dynamics of planktonic SAGMGC-1 and segregation of ammonia-oxidizing thaumarchaeota ecotypes by newly designed primers and quantitative polymerase chain reaction. Environ Microbiol 16:689–700. doi:10.1111/1462-2920.12191

    Article  CAS  PubMed  Google Scholar 

  36. Pester M, Rattei T, Flechl S, Gröngröft A, Richter A, Overmann J, Reinhold-Hurek B, Loy A, Wagner M (2012) amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ Microbiol. doi:10.1111/j.1462-2920.2011.02666.x

    PubMed Central  PubMed  Google Scholar 

  37. Herrmann M, Scheibe A, Avrahami S, Küsel K (2011) Ammonium availability affects the ratio of ammonia-oxidizing bacteria to ammonia-oxidizing archaea in simulated creek ecosystems. Appl Environ Microbiol 77:1896–1899. doi:10.1128/aem.02879-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Verhamme DT, Prosser JI, Nicol GW (2011) Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J 5:1067–1071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A, Daims H, Wagner M (2008) A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. PNAS 105:2134–2139. doi:10.1073/pnas.0708857105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Nicol GW (2011) Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. PNAS 108:15892–15897. doi:10.1073/pnas.1107196108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Battin TJ, Sloan WT, Kjelleberg S, Daims H, Head IM, Curtis TP, Eberl L (2007) Microbial landscapes: new paths to biofilm research. Nat Rev Microbiol 5:76–81

    Article  CAS  PubMed  Google Scholar 

  42. Gieseke A, Nielsen JL, Amann R, Nielsen PH, De Beer D (2005) In situ substrate conversion and assimilation by nitrifying bacteria in a model biofilm. Environ Microbiol 7:1392–1404. doi:10.1111/j.1462-2920.2005.00826.x

    Article  CAS  PubMed  Google Scholar 

  43. Tourna M, Freitag TE, Nicol GW, Prosser JI (2008) Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol 10:1357–1364. doi:10.1111/j.1462-2920.2007.01563.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank C. Gutierrez, M. Ribot, and N. Nomokonova for field and laboratory assistance. S.N.M. was supported by a JAE predoctoral fellowship from the Spanish National Research Council (CSIC) and J.-C.A. by a Juan de la Cierva fellowship from the Spanish Office for Research (MINECO). This research was granted by DARKNESS CGL2012-32747 to EOC and MED_FORESTREAM CGL2011-30590-CO2-02 (MINECO) and REFRESH-244121 (7th Framework Programme EU Comission) to EM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio O. Casamayor.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merbt, S.N., Auguet, JC., Blesa, A. et al. Wastewater Treatment Plant Effluents Change Abundance and Composition of Ammonia-Oxidizing Microorganisms in Mediterranean Urban Stream Biofilms. Microb Ecol 69, 66–74 (2015). https://doi.org/10.1007/s00248-014-0464-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0464-8

Keywords

Navigation