Skip to main content
Log in

Population Dynamics of Vibrio and Pseudomonas Species Isolated from Farmed Tasmanian Atlantic Salmon (Salmo salar L.): A Seasonal Study

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Vibrio and Pseudomonas species have been shown to be part of the normal microbiota of Atlantic salmon (Salmo salar L.), with some strains causing disease in fish. The factors affecting their prevalence and persistence in the salmon gut, however, have not been well studied. In this study, we collected 340 Vibrio and 150 Pseudomonas isolates from the hindgut of farmed Tasmanian Atlantic salmon, fed with two commercially available diets. Samples were collected every 6–8 weeks between July 2011 and May 2012. Isolates from selective agar were initially identified using biochemical tests and confirmed using genus-specific primers and 16S ribosomal RNA (16S rRNA) sequencing. Random amplified polymorphic DNA (RAPD) PCR was used to type both Pseudomonas and Vibrio; the latter was further typed using a biochemical fingerprinting method (PhP-RV plates). We observed low species diversity with strains comprising Vibrio ichthyoenteri/Vibrio scophthalmi, Vibrio crassostreae/Vibrio splendidus, Aliivibrio finisterrensis, Photobacterium phosphoreum and Pseudomonas fragi. Out of 340 Vibrio isolates, 238 (70 %) belonged to 21 clonal types and were found predominantly during summer when water temperatures reached 15 to 21 °C. Of these, the four major clonal types were found in multiple samples (70 %). P. fragi, on the other hand, was only found during the colder water temperatures and belonged to 18 clonal types. The presence of both groups of bacteria and their clonal types were independent of the fish diets used, suggesting that the water temperature was the main factor of the prevalence and persistence of these bacteria in the gut of Atlantic salmon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Birkbeck TH, Ringø E (2005) Pathogenesis of the gastrointestinal tract of growing fish. In: Holzapfel WH, Naughton PJ (eds) Microbial ecology in growing animals. Elsevier, Edinburgh, pp 208–234. doi:10.1016/S1877-1823(09)70043-8

    Chapter  Google Scholar 

  2. Burr G, Gatlin D, Ricke S (2005) Microbial ecology of the gastrointestinal tract of fish and the potential application of prebiotics and probiotics in finfish aquaculture. J World Aquac Soc 36:425–436. doi:10.1111/j.1749-7345.2005.tb00390.x

    Article  Google Scholar 

  3. Bairagi A, Ghosh K, Sen S, Ray A (2002) Enzyme producing bacterial flora isolated from fish digestive tracts. Aquac Int 10:109–121. doi:10.1023/A:1021355406412

    Article  CAS  Google Scholar 

  4. Romero J, Navarrete P (2006) 16S rDNA-based analysis of dominant bacterial populations associated with early life stages of coho salmon (Oncorhynchus kisutch). Microb Ecol 51:422–430. doi:10.1007/s00248-006-9037-9

    Article  CAS  PubMed  Google Scholar 

  5. Bakke-McKellep AM, Penn MH, Salas PM, Refstie S, Sperstad S, Landsverk T, Ringø E, Krogdahl Å (2007) Effects of dietary soyabean meal, inulin and oxytetracycline on intestinal microbiota and epithelial cell stress, apoptosis and proliferation in the teleost Atlantic salmon (Salmo salar L.). Br J Nutr 97:699–713. doi:10.1017/S0007114507381397

    Article  CAS  PubMed  Google Scholar 

  6. Ringø E, Sperstad S, Myklebust R, Mayhew TM, Olsen RE (2006) The effect of dietary inulin on aerobic bacteria associated with hindgut of Arctic charr (Salvelinus alpinus L.). Aquac Res 37:891–897. doi:10.1111/j.1365-2109.2006.01509.x

    Article  Google Scholar 

  7. Navarrete P, Espejo R, Romero J (2009) Molecular analysis of microbiota among the digestive tract of juvenile Atlantic salmon (Salmo salar L.). Microb Ecol 57:550

    Article  CAS  PubMed  Google Scholar 

  8. Holben WE, Williams P, Saarinen M, Särkilahti LK, Apajalahti JHA (2002) Phylogenetic analysis of intestinal microflora indicates a novel Mycoplasmaphylotype in farmed and wild salmon. Microb Ecol 44:175–185. doi:10.1007/s00248-003-0002-6

    Article  CAS  PubMed  Google Scholar 

  9. Navarrete P, Mardones P, Opazo R, Espejo R, Romero J (2008) Oxytetracycline treatment reduces bacterial diversity of intestinal microbiota of Atlantic salmon. J Aquat Anim Health 20:177–183. doi:10.1577/H07-043.1

    Article  PubMed  Google Scholar 

  10. van den Ingh TSGAM, Krogdahl Å, Olli JJ, Hendriks HGCJM, Koninkx JGJF (1991) Effects of soybean-containing diets on the proximal and distal intestine in Atlantic salmon (Salmo salar): a morphological study. Aquaculture 94:297–305. doi:10.1016/0044-8486(91)90174-6

    Article  Google Scholar 

  11. Baeverfjord G, Krogdahl Å (1996) Development and regression of soybean meal induced enteritis in Atlantic salmon, Salmo salar L., distal intestine: a comparison with the intestines of fasted fish. J Fish Dis 19:375–387. doi:10.1046/j.1365-2761.1996.d01-92.x

    Article  Google Scholar 

  12. Olsen R, Sundell K, Hansen T, Hemre G-I, Myklebust R, Mayhew T, Ringø E (2002) Acute stress alters the intestinal lining of Atlantic salmon, Salmo salar L.: An electron microscopical study. Fish Physiol Biochem 26:211–221. doi:10.1023/A:1026217719534

    Article  CAS  Google Scholar 

  13. Austin B, Zhang XH (2006) Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Lett Appl Microbiol 43:119–124. doi:10.1111/j.1472-765X.2006.01989.x

    Article  CAS  PubMed  Google Scholar 

  14. Soto-Rodriguez SA, Roque A, Lizarraga-Partida ML, Guerra-Flores AL, Gomez-Gil B (2003) Virulence of luminous vibrios to Artemia franciscana nauplii. Dis Aquat Org 53:231–240. doi:10.3354/dao053231

    Article  CAS  PubMed  Google Scholar 

  15. Hovda MB, Fontanillas R, McGurk C, Obach A, Rosnes JT (2012) Seasonal variations in the intestinal microbiota of farmed Atlantic salmon (Salmo salar L.). Aquac Res 43:154–159. doi:10.1111/j.1365-2109.2011.02805.x

    Article  Google Scholar 

  16. Hovda MB, Lunestad BT, Fontanillas R, Rosnes JT (2007) Molecular characterisation of the intestinal microbiota of farmed Atlantic salmon (Salmo salar L.). Aquaculture 272:581–588. doi:10.1016/j.aquaculture.2007.08.045

    Article  CAS  Google Scholar 

  17. Ringø E, Mikkelsen H, Kaino T, Olsen RE, Mayhew TM, Myklebust R (2006) Endocytosis of indigenous bacteria and cell damage caused by Vibrio anguillarum in the foregut and hindgut of spotted wolffish (Anarhichas minor Olafsen) fry: an electron microscopical study. Aquac Res 37:647–651. doi:10.1111/j.1365-2109.2006.01449.x

    Article  Google Scholar 

  18. Zhang XH, Austin B (2000) Pathogenicity of Vibrio harveyi to salmonids. J Fish Dis 23:93–102. doi:10.1046/j.1365-2761.2000.00214.x

    Article  Google Scholar 

  19. Wang XH, Oon HL, Ho GWP, Wong WSF, Lim TM, Leung KY (1998) Internalization and cytotoxicity are important virulence mechanisms in vibrio-fish epithelial cell interactions. Microbiology 144:2987–3002. doi:10.1099/00221287-144-11-2987

    Article  CAS  PubMed  Google Scholar 

  20. Nishimori E, Kita-Tsukamoto K, Wakabayashi H (2000) Pseudomonas plecoglossicida sp. nov., the causative agent of bacterial haemorrhagic ascites of ayu, Plecoglossus altivelis. Int J Syst Evol Microbiol 50:83–89. doi:10.1099/00207713-50-1-83

    Article  CAS  PubMed  Google Scholar 

  21. Ercolini D, Russo F, Blaiotta G, Pepe O, Mauriello G, Villani F (2007) Simultaneous detection of Pseudomonas fragi, P. lundensis, and P. putida from meat by use of a multiplex PCR assay targeting the carA gene. Appl Environ Microbiol 73:2354–2359. doi:10.1128/AEM.02603-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Zarkasi KZ, Abell GCJ, Taylor RS, Neuman C, Hatje E, Tamplin ML, Katouli M, Bowman JP (2014) Pyrosequencing-based characterization of gastrointestinal bacteria of Atlantic salmon (Salmosalar L.) within a commercial mariculture system. J Appl Microbiol. doi:10.1111/jam.12514

    PubMed  Google Scholar 

  23. Dalmasso A, La Neve F, Suffredini E, Croci L, Serracca L, Bottero M, Civera T (2009) Development of a PCR assay targeting the rpoA gene for the screening of Vibrio genus. Food Anal Methods 2:317–324. doi:10.1007/s12161-009-9089-9

    Article  Google Scholar 

  24. Spilker T, Coenye T, Vandamme P, LiPuma JJ (2004) PCR-Based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol 42:2074–2079. doi:10.1128/JCM.42.5.2074-2079.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Pang L, Zhang XH, Zhong Y, Chen J, Li Y, Austin B (2006) Identification of Vibrio harveyi using PCR amplification of the toxR gene. Lett Appl Microbiol 43:249–255. doi:10.1111/j.1472-765X.2006.01962.x

    Article  CAS  PubMed  Google Scholar 

  26. Pedersen K, Kühn I, Seppänen J, Hellström A, Tiainen T, Rimaila-Pärnänen E, Larsen JL (1999) Clonality of Vibrio anguillarum strains isolated from fish from the Scandinavian countries, Sweden, Finland and Denmark. J Appl Microbiol 86:337–347. doi:10.1046/j.1365-2672.1999.00658.x

    Article  CAS  PubMed  Google Scholar 

  27. Sneath PHA, Sokal RR (1973) Numerical taxonomy. W.H. Freeman & Co., New York

    Google Scholar 

  28. Ramos NL, Saayman ML, Chapman TA, Tucker JR, Smith HV, Faoagali J, Chin JC, Brauner A, Katouli M (2010) Genetic relatedness and virulence gene profiles of Escherichia coli strains isolated from septicaemic and uroseptic patients. Eur J Clin Microbiol Infect Dis 29:15–23. doi:10.1007/s10096-009-0809-2

    Article  CAS  PubMed  Google Scholar 

  29. Blanch AR, Alsina M, Simón M, Jofre J (1997) Determination of bacteria associated with reared turbot (Scophthalmus maximus) larvae. J Appl Microbiol 82:729–734. doi:10.1046/j.1365-2672.1997.00190.x

    Article  Google Scholar 

  30. Cerdà-Cuéllar M, Blanch AR (2002) Detection and identification of Vibrio scophthalmi in the intestinal microbiota of fish and evaluation of host specificity. J Appl Microbiol 93:261–268. doi:10.1046/j.1365-2672.2002.01697.x

    Article  PubMed  Google Scholar 

  31. Martin-Antonio B, Manchado M, Infante C, Zerolo R, Labella A, Alonso C, Borrego JJ (2007) Intestinal microbiota variation in Senegalese sole (Solea senegalensis) under different feeding regimes. Aquac Res 38:1213–1222. doi:10.1111/j.1365-2109.2007.01790.x

    Article  CAS  Google Scholar 

  32. Olafsen JA (2001) Interactions between fish larvae and bacteria in marine aquaculture. Aquaculture 200:223–247. doi:10.1016/S0044-8486(01)00702-5

    Article  Google Scholar 

  33. Dhanasiri AS, Brunvold L, Brinchmann M, Korsnes K, Bergh Ø, Kiron V (2011) Changes in the intestinal microbiota of wild Atlantic cod Gadus morhua L. upon captive rearing. Microb Ecol 61:20–30. doi:10.1007/s00248-010-9673-y

    Article  PubMed  Google Scholar 

  34. Beaz-Hidalgo R, Doce A, Balboa S, Barja JL, Romalde JL (2010) Aliivibrio finisterrensis sp. nov., isolated from Manila clam, Ruditapes philippinarum and emended description of the genus Aliivibrio. Int J Syst Evol Microbiol 60:223–228. doi:10.1099/ijs.0.010710-0

    Article  CAS  PubMed  Google Scholar 

  35. Sugita H, Mizuki H, Itoi S (2012) Diversity of siderophore-producing bacteria isolated from the intestinal tracts of fish along the Japanese coast. Aquac Res 43:481–488. doi:10.1111/j.1365-2109.2011.02851.x

    Article  Google Scholar 

  36. Dalgaard P, Mejlholm O, Christiansen TJ, Huss HH (1997) Importance of Photobacterium phosphoreum in relation to spoilage of modified atmosphere-packed fish products. Lett Appl Microbiol 24:373–378. doi:10.1046/j.1472-765X.1997.00152.x

    Article  Google Scholar 

Download references

Acknowledgments

We thank the staff at Tassal from which samples were collected, for their help and collaboration throughout this study and, in particular, thanks to Dr. Alistair Brown and Peter Gysen. We also thank the staff of Ridley AquaFeed especially Dr. Richard Smullen for supporting this study. We also thank the student scholarship received from the University of the Sunshine Coast and PhD top-up scholarship of the Australian Seafood CRC (2011-702).

Transparency declarations

None to declare.

Conflict of interest

The authors declare that there is no conflict of interest with the organisation that sponsored this research and publications arising from this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Katouli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatje, E., Neuman, C., Stevenson, H. et al. Population Dynamics of Vibrio and Pseudomonas Species Isolated from Farmed Tasmanian Atlantic Salmon (Salmo salar L.): A Seasonal Study. Microb Ecol 68, 679–687 (2014). https://doi.org/10.1007/s00248-014-0462-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0462-x

Keywords

Navigation