Skip to main content
Log in

Differential Expression of a Sodium-Phosphate Cotransporter Among Vibrio vulnificus Strains

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Vibrio vulnificus is an estuarine bacterium with pathogenic potential. Its three known biotypes differ in host distribution. We have found the nptA gene for a sodium-phosphate cotransporter, which is rare in bacteria, in each biotype. nptA transcript abundance differed significantly among biotypes, leading to the hypothesis that transcript levels differ under environmental conditions associated with estuarine and host environments. nptA transcript abundance was assessed in V. vulnificus biotypes 1 (C and E genotypes), 2 and 3 strains under varied salinity, phosphate concentration, and pH. Differences in transcript abundance separated strains into two groups. Type C and biotype 3 strains formed Group 1, while type E and biotype 2 strains formed Group 2. Group 2 strains had significantly greater nptA RNA transcript abundance than Group 1. Transcript abundance in the two groups also responded differently to pH and salinity, suggesting differential regulation of nptA in response to environmental conditions. Comparison of the deduced amino acid sequences of NptA among strains resulted in strain grouping similar to that based on transcript abundance. Variation in transcript abundance between groups may affect the ability of V. vulnificus strains to colonize hosts and/or to compete as free-living bacteria in various habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Buchrieser C, Gangar VV, Murphree RL, Tamplin ML, Kaspar CW (1995) Multiple Vibrio vulnificus strains in oysters as demonstrated by clamped homogeneous electric field gel electrophoresis. Appl Environ Microbiol 61:1163–1168

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Staley C, Jones MK, Wright AC, Harwood VJ (2011) Genetic and quantitative assessment of Vibrio vulnificus populations in oyster (Crassostrea virginica) tissues. Environ Microbiol Rep 3:543–549

    Article  CAS  PubMed  Google Scholar 

  3. Broza YY, Raz N, Lerner L, Danin-Poleg Y, Kashi Y (2012) Genetic diversity of the human pathogen Vibrio vulnificus: a new phylogroup. Int J Food Microbiol 153:436–443. doi:10.1016/j.ijfoodmicro.2011.12.011

    Article  CAS  PubMed  Google Scholar 

  4. Tao Z, Larsen AM, Bullard SA, Wright AC, Arias CR (2012) Prevalence and population structure of Vibrio vulnificus on fishes from the northern Gulf of Mexico. Appl Environ Microbiol 78:7611–7618. doi:10.1128/Aem.01646-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Wright AC, Hill RT, Johnson JA, Roghman MC, Colwell RR, Morris JG (1996) Distribution of Vibrio vulnificus in the Chesapeake Bay. Appl Environ Microbiol 62:717–724

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Bisharat N, Agmon V, Finkelstein R, Raz R, Ben-Dror G, Lerner L, Soboh S, Colodner R, Cameron DN, Wykstra DL, Swerdlow DL, Farmer JJ 3rd (1999) Clinical, epidemiological, and microbiological features of Vibrio vulnificus biogroup 3 causing outbreaks of wound infection and bacteraemia in Israel. Israel Vibrio Study Group. Lancet 354:1421–1424

    Article  CAS  PubMed  Google Scholar 

  7. Bisharat N, Cohen DI, Harding RM, Falush D, Crook DW, Peto T, Maiden MC (2005) Hybrid Vibrio vulnificus. Emerg Infect Dis 11:30–35

    Article  PubMed Central  PubMed  Google Scholar 

  8. Tison DL, Nishibuchi M, Greenwood JD, Seidler RJ (1982) Vibrio vulnificus biogroup 2 — new biogroup pathogenic for eels. Appl Environ Microbiol 44:640–646

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Amaro C, Biosca EG (1996) Vibrio vulnificus biotype 2, pathogenic for eels, is also an opportunistic pathogen for humans. Appl Environ Microbiol 62:1454–1457

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Hlady WG, Mullen RC, Hopkin RS (1993) Vibrio vulnificus from raw oysters. Leading cause of reported deaths from food-borne illness in Florida. J Fla Med Assoc 80:536–538

    CAS  PubMed  Google Scholar 

  11. Hlady WG, Klontz KC (1996) The epidemiology of Vibrio infections in Florida, 1981–1993. J Infect Dis 173:1176–1183

    Article  CAS  PubMed  Google Scholar 

  12. Jackson JK, Murphree RL, Tamplin ML (1997) Evidence that mortality from Vibrio vulnificus infection results from single strains among heterogeneous populations in shellfish. J Clin Microbiol 35:2098–2101

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Aznar R, Ludwig W, Amann RI, Schleifer KH (1994) Sequence determination of rRNA genes of pathogenic Vibrio species and whole-cell identification of Vibrio vulnificus with rRNA-targeted oligonucleotide probes. Int J Syst Bacteriol 44:330–337

    Article  CAS  PubMed  Google Scholar 

  14. Cohen ALV, Oliver JD, DePaola A, Feil EJ, Boyd EF (2007) Emergence of a virulent clade of Vibrio vulnificus and correlation with the presence of a 33-kilobase genomic island. Appl Environ Microbiol 73:5553–5565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Rosche TM, Binder EA, Oliver JD (2010) Vibrio vulnificus genome suggests two distinct ecotypes. Environ Microbiol Rep 2:128–132. doi:10.1111/j.1758-2229.2009.00119.x

    Article  CAS  PubMed  Google Scholar 

  16. Vickery MC, Nilsson WB, Strom MS, Nordstrom JL, Depaola A (2007) A real-time PCR assay for the rapid determination of 16S rRNA genotype in Vibrio vulnificus. J Microbiol Methods 68:376–384

    Article  CAS  PubMed  Google Scholar 

  17. Rosche TM, Yano Y, Oliver JD (2005) A rapid and simple PCR analysis indicates there are two subgroups of Vibrio vulnificus which correlate with clinical or environmental isolation. Microbiol Immunol 49:381–389

    Article  CAS  PubMed  Google Scholar 

  18. Nilsson WB, Paranjype RN, DePaola A, Strom MS (2003) Sequence polymorphism of the 16S rRNA gene of Vibrio vulnificus is a possible indicator of strain virulence. J Clin Microbiol 41:442–446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Werner A, Kinne RKH (2001) Evolution of the Na–Pi cotransport systems. Am J Physiol Regul Integr Comp Physiol 280:R301–R312

    CAS  PubMed  Google Scholar 

  20. Lebens M, Lundquist P, Soderlund L, Todorovic M, Carlin NIA (2002) The nptA gene of Vibrio cholerae encodes a functional sodium-dependent phosphate cotransporter homologous to the type II cotransporters of eukaryotes. J Bacteriol 184:4466–4474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J (1998) Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci U S A 95:14564–14569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Murer H, Lotscher M, Kaissling B, Levi M, Kempson SA, Biber J (1996) Renal brush border membrane Na/Pi cotransport: molecular aspects in PTH-dependent and dietary regulation. Kidney Int 49:1769–1773

    Article  CAS  PubMed  Google Scholar 

  23. de la Horra C, Hernando N, Lambert G, Forster I, Biber J, Murer H (2000) Molecular determinants of pH sensitivity of the type IIa Na/Pi cotransporter. J Biol Chem 275:6284–6287

    Article  PubMed  Google Scholar 

  24. Markowitz VM, Chen IMA, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Anderson I, Lykidis A, Mavromatis K, Ivanova NN, Kyrpides NC (2010) The integrated microbial genomes system: an expanding comparative analysis resource. Nucleic Acids Res 38:D382–D390. doi:10.1093/nar/gkp887

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Staley C, Harwood VJ (2008) A conserved hypothetical protein may aid in typing Vibrio vulnificus. 108th General Meeting of the American Society for Microbiology, Boston, MA

  26. Chase E, Harwood VJ (2011) Comparison of the effects of environmental parameters on growth rates of Vibrio vulnificus biotypes I, II, and III by culture and quantitative PCR Analysis. Appl Environ Microbiol 77:4200–4207. doi:10.1128/Aem.00135-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Oh WS, Im YS, Yeon KY, Yoon YJ, Kim JW (2007) Phosphate and carbon source regulation of alkaline phosphatase and phospholipase in Vibrio vulnificus. J Microbiol 45:311–317

    CAS  PubMed  Google Scholar 

  28. Oliver JD, Warner RA, Cleland DR (1983) Distribution of Vibrio vulnificus and other lactose-fermenting vibrios in the marine environment. Appl Environ Microbiol 45:985–998

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Waugh A, Grant A (2007) Anatomy and physiology in health and illness. Churchill Livingstone, London

    Google Scholar 

  30. Lee BC, Lee JH, Kim MW, Kim BS, Oh MH, Kim KS, Kim TS, Choi SH (2008) Vibrio vulnificus rtxE is important for virulence, and its expression is induced by exposure to host cells. Infect Immun 76:1509–1517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Choi J, Shin D, Ryu S (2007) Implication of quorum sensing in Salmonella enterica serovar typhimurium virulence: the luxS gene is necessary for expression of genes in pathogenicity island 1. Infect Immun 75:4885–4890. doi:10.1128/Iai.01942-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Tasara T, Stephan R (2007) Evaluation of housekeeping genes in Listeria monocytogenes as potential internal control references for normalizing mRNA expression levels in stress adaptation models using real-time PCR. FEMS Microbiol Lett 269:265–272. doi:10.1111/j.1574-6968.2007.00633.x

    Article  CAS  PubMed  Google Scholar 

  33. Yun JJ, Heisler LE, Hwang IIL, Wilkins O, Lau SK, Hyrcza M, Jayabalasingham B, Jin J, McLaurin J, Tsao MS, Der SD (2006) Genomic DNA functions as a universal external standard in quantitative real-time PCR. Nucleic Acids Res 34:e85. doi:10.1093/nar/gkl400

    Article  PubMed Central  PubMed  Google Scholar 

  34. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Pond SLK, Scheffler K (2013) FUBAR: a fast, unconstrained Bayesian approximation for inferring selection. Mol Biol Evol 30:1196–1205. doi:10.1093/molbev/mst030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Delport W, Poon AFY, Frost SDW, Pond SLK (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26:2455–2457. doi:10.1093/bioinformatics/btq429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Morrison SS, Williams T, Cain A, Froelich B, Taylor C, Baker-Austin C, Verner-Jeffreys D, Hartnell R, Oliver JD, Gibas CJ (2012) Pyrosequencing-based comparative genome analysis of Vibrio vulnificus environmental isolates. PLoS One 7

  38. Wang ZG, Wu Z, Xu SL, Zha J (2012) Genome sequence of the human-pathogenetic bacterium Vibrio vulnificus B2. J Bacteriol 194:7019–7019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Gulig PA, de Crecy-Lagard V, Wright AC, Walts B, Telonis-Scott M, McIntyre LM (2010) SOLiD sequencing of four Vibrio vulnificus genomes enables comparative genomic analysis and identification of candidate clade-specific virulence genes. BMC Genomics 11. doi:10.1186/1471-2164-11-512

  40. Jordan IK, Rogozin IB, Wolf YI, Koonin EV (2002) Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res 12:962–968. doi:10.1101/Gr.87702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Warner E, Oliver JD (2008) Population structures of two genotypes of Vibrio vulnificus in oysters (Crassostrea virginica) and seawater. Appl Environ Microbiol 74:80–85

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Froelich B, Ayrapetyan M, Oliver JD (2012) Vibrio vulnificus integration into marine aggregates and subsequent uptake by the oyster, Crassostrea virginica. Appl Environ Microbiol. doi:10.1128/AEM.03095-12

    PubMed Central  Google Scholar 

  43. Gordon KV, Vickery MC, DePaola A, Staley C, Harwood VJ (2008) Real-time PCR assays for quantification and differentiation of Vibrio vulnificus strains in oysters and water. Appl Environ Microbiol 74:1704–1709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Lin ML, Schwarz JR (2003) Seasonal shifts in population structure of Vibrio vulnificus in an estuarine environment as revealed by partial 16S ribosomal DNA sequencing. FEMS Microbiol Ecol 45:23–27

    Article  CAS  PubMed  Google Scholar 

  45. Blake PA, Merson MH, Weaver RE, Hollis DG, Heublein PC (1979) Disease caused by a marine Vibrio. Clinical characteristics and epidemiology. N Engl J Med 300:1–5

    Article  CAS  PubMed  Google Scholar 

  46. Galtsoff PS (1964) The American oyster, Crassostrea virginica Gmelin. Fish B-NOAA 64:1–480

    Google Scholar 

  47. Noël-Lambot (1981) Presence in the intestinal lumen of marine fish of corpuscles of high cadmium-, zinc-, and copper-binding capacity: a possible mechanism of heavy metal tolerance. Mar Ecol Prog Ser 4:175–181

    Article  Google Scholar 

  48. Farrell AP, Brauner CJ, Grosell M (2010) Feeding, digestion and absorption of nutrients. Fish physiology: the multifunctional gut of fish. Elsevier, Burlington

    Google Scholar 

  49. Sera H, Ishida Y, Kadota H (1972) Bacterial flora in digestive tracts of marine fish — IV. Effect of H+ concentration and gastric juices on indigenous bacteria. Bull Jpn Soc Sci Fish 38:859–863

    Article  Google Scholar 

  50. Depaola A, Capers GM, Alexander D (1994) Densities of Vibrio vulnificus in the intestines of fish from the U.S. Gulf Coast. Appl Environ Microbiol 60:984–988

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Orlando Lugo, Doris Luong, and Augustine Reid Wilson for assistance with molecular analyses and sequence analysis. We also thank Kathleen Scott, Ph.D. (University of South Florida) for assistance with sequence alignment, amino acid deduction, and DNA heterogeneity analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie J. Harwood.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staley, C., Harwood, V.J. Differential Expression of a Sodium-Phosphate Cotransporter Among Vibrio vulnificus Strains. Microb Ecol 67, 24–33 (2014). https://doi.org/10.1007/s00248-013-0300-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0300-6

Keywords

Navigation