Skip to main content

Advertisement

Log in

Soil Bacterial Consortia and Previous Exposure Enhance the Biodegradation of Sulfonamides from Pig Manure

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Persistence or degradation of synthetic antibiotics in soil is crucial in assessing their environmental risks. Microbial catabolic activity in a sandy loamy soil with pig manure using 12C- and 14C-labelled sulfamethazine (SMZ) respirometry showed that SMZ was not readily degradable. But after 100 days, degradation in sulfadiazine-exposed manure was 9.2%, far greater than soil and organic manure (0.5% and 0.11%, respectively, p < 0.05). Abiotic degradation was not detected suggesting microbial catabolism as main degradation mechanism. Terminal restriction fragment length polymorphism showed biodiversity increases within 1 day of SMZ spiking and especially after 200 days, although some species plummeted. A clone library from the treatment with highest degradation showed that most bacteria belonged to α, β and γ classes of Proteobacteria, Firmicutes, Bacteroidetes and Acidobacteria. Proteobacteria (α, β and γ), Firmicutes and Bacteroidetes which were the most abundant classes on day 1 also decreased most following prolonged exposure. From the matrix showing the highest degradation rate, 17 SMZ-resistant isolates biodegraded low levels of 14 C-labelled SMZ when each species was incubated separately (0.2–1.5%) but biodegradation was enhanced when the four isolates with the highest biodegradation were incubated in a consortium (Bacillus licheniformis, Pseudomonas putida, Alcaligenes sp. and Aquamicrobium defluvium as per 16S rRNA gene sequencing), removing up to 7.8% of SMZ after 20 days. One of these species (B. licheniformis) was a known livestock and occasional human pathogen. Despite an environmental role of these species in sulfonamide bioremediation, the possibility of horizontal transfer of pathogenicity and resistance genes should caution against an indiscriminate use of these species as sulfonamide degraders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Accinelli C, Koskinen WC, Becker JM, Sadowsky MJ (2007) Environmental fate of two sulfonamide antimicrobial agents in soil. J Agric Food Chem 55:2677–2682

    Article  PubMed  CAS  Google Scholar 

  2. Agerholm JS, Jensen NE, Giese SB, Jensen HE (1997) A preliminary study on the pathogenicity of Bacillus licheniformis bacteria in immunodepressed mice. APMIS 105(1):48–54

    Article  PubMed  CAS  Google Scholar 

  3. Alexy R, Kümpel T, Kümmerer K (2004) Assessment of degradation of 18 antibiotics in the Closed Bottle Test. Chemosphere 57:505–512

    Article  PubMed  CAS  Google Scholar 

  4. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48(Suppl S1):5–16

    Article  PubMed  CAS  Google Scholar 

  5. Ashton D, Hilton M, Thomas KV (2004) Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Sci Total Environ 333:167–184

    Article  PubMed  CAS  Google Scholar 

  6. Aust M-O, Godlinski F, Travis GR, Hao X, McAllister TA, Leinweber P, Thiele-Bruhn S (2008) Distribution of sulfamethazine, chlotetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle. Environ Pollut 156:1243–1251

    Article  PubMed  CAS  Google Scholar 

  7. Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    PubMed  CAS  Google Scholar 

  8. Blackwell PA, Holten Lützhøft HC, Mab HP, Halling-Sørensen B, Boxall ABA, Kay P (2004) Fast and robust simultaneous determination of three veterinary antibiotics in groundwater and surface water using a tandem solid-phase extraction with high-performance liquid chromatography-UV detection. J Chromatogr A 1045:111–117

    Article  PubMed  CAS  Google Scholar 

  9. BLAST Available at http://www.ncbi.nlm.nih.gov/Blast.cgi. Accessed 12 April 2011.

  10. Bond PL, Banfield JF (2001) Design and performance of rRNA targeted oligonucleotide probes for in situ detection and phylogenetic identification of microorganisms inhabiting acid mine drainage environments. Microb Ecol 41:149–161

    PubMed  CAS  Google Scholar 

  11. Boreen A, Arnold W, McNeill K (2004) Photochemical fate of sulfa drugs in the aquatic environment: sulfa drugs containing five-membered heterocyclic groups. Environ Sci Technol 38:3933–3940

    Article  PubMed  CAS  Google Scholar 

  12. Boxall ABA (2004) The environmental side effects of medication. EMBO Rep 5(12):1110–1116

    Article  PubMed  CAS  Google Scholar 

  13. Boxall ABA, Blackwell P, Cavallo R, Kay P, Tolls J (2002) The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicol Lett 131:19–28

    Article  PubMed  CAS  Google Scholar 

  14. Boxall ABA, Fogg LA, Blackwell PA, Kay P, Pemberton EJ, Croxford A (2004) Veterinary medicines in the environment. Rev Environ Contam Toxicol 180:1–91

    Article  PubMed  CAS  Google Scholar 

  15. Butler GJ, Wolkowicz GSK (1986) Predator-mediated competition in the chemostat. J Math Biol 24:167–191

    Article  Google Scholar 

  16. Byrne-Bailey KG, Gaze WH, Kay P, Boxall ABA, Hawkey PM, Wellington EMH (2009) Prevalence of sulfonamide resistance genes in bacterial isolates from manured agricultural soils and pig slurry in the United Kingdom. Antimicrob Agents Chemother 53(2):696–702

    Article  PubMed  CAS  Google Scholar 

  17. Chinedum IE (2005) Microbial resistance to antibiotics. Afr J Biotech 4(13):1606–1611

    CAS  Google Scholar 

  18. Chopra I (2001) Antibiotics. In: Encyclopaedia of life sciences. Wiley, Chichester. http://www.els.net/. doi:10.1038/npg.els.0002225. Accessed 1 February 2011

  19. Christian T, Schneider RJ, Färber HA, Skutlarek D, Meyer MT, Goldbach HE (2003) Determination of antibiotic residues in manure, soil, and surface waters. Acta Hydrochim Hydrobiol 31:36–44

    Article  CAS  Google Scholar 

  20. Clarke KR (1993) Non parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  21. Dantas G, Sommer MOA, Oluwasegun RD, Church GM (2008) Bacteria subsisting on antibiotics. Science 320:100–103

    Article  PubMed  CAS  Google Scholar 

  22. EPA (1997) Bacillus licheniformis final risk assessment. Available at http://epa.gov/biotech_rule/pubs/fra/fra005.htm. Accessed 15 September 2011

  23. EPA (1998) TSCA Experimental release application approved for Pseudomonas putida strains (fact sheet). Available at http://epa.gov/biotech_rule/pubs/submissions/4-5dec.htm. Accessed 15 September 2011

  24. EU (2003) Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition. Official Journal of the European Union, L 268:29-43.

    Google Scholar 

  25. Fan Z, Casey FXM, Hakk H, Larsen GL, Khan E (2011) Sorption, fate and mobility of sulphonamides in soils. Water Air Soil Pollut 218:49–61

    Article  CAS  Google Scholar 

  26. Gessler F, Böhnel H (2006) Persistence and mobility of a Clostridium botulinum spore population introduced to soil with spiked compost. FEMS Microbiol Ecol 58:384–393

    Article  PubMed  CAS  Google Scholar 

  27. Gillespie SH, Hawkey PM (eds) (2006) Principles and practice of clinical bacteriology, 2nd edn. Wiley, Chichester

    Google Scholar 

  28. Grape L, Sundström L, Kronvall G (2003) Sulphonamide resistance gene sul3 found in Escherichia coli isolates from human sources. J Antimicrob Chemother 52:1022–1024

    Article  PubMed  CAS  Google Scholar 

  29. Gu JD (2007) Microbial colonization of polymeric materials for space applications and mechanisms of biodeterioration: a review. Int Biodet Biodeg 59:170–179

    Article  CAS  Google Scholar 

  30. Haller MY, Müller SR, McArdell CS, Alder AC, Suter MJ-F (2002) Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography-mass spectrometry. J Chromatogr A 952:111–120

    Article  PubMed  CAS  Google Scholar 

  31. Hamscher G, Pawelzick HT, Sczesny S, Nau H, Hartung J (2003) Antibiotics in dust originating from a pig-fattening farm: a new source of health hazard for farmers? Environ Health Perspect 111:1590–1594

    Article  PubMed  CAS  Google Scholar 

  32. Hardy A, Christmann D, Feger JM, Pasquali JL, Storck D (1986) Septicemia after arteriography. Role of an usually non-pathogenic bacteria: Bacillus licheniformis. Méd Malad Infect 16(1):37–38

    Article  Google Scholar 

  33. Heuer H, Kopmann C, Binh CTT, Top EM, Smalla K (2009) Spreading antibiotic resistance through spread manure: characteristics of a novel plasmid type with low %G + C content. Environ Microbiol 11(4):937–949

    Article  PubMed  CAS  Google Scholar 

  34. Hirsch R, Ternes T, Haberer K, Kratz K-L (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225:109–118

    Article  PubMed  CAS  Google Scholar 

  35. Höper H, Kues J, Nau H, Hamscher G (2002) Eintrag und Verbleib von Tierarzneimittelwirkstoffen in Böden. Bodenschutz 7:141–148

    Google Scholar 

  36. Hossain AKM, Alexander M (1984) Enhancing soybean rhizosphere colonization by Rhizobium japonicum. Appl Environ Microbiol 48:468–472

    PubMed  CAS  Google Scholar 

  37. Hughes D, Anderson DI (2001) Antibiotic development and resistance. Taylor & Francis, London, pp 137–154

    Google Scholar 

  38. Hurst CJ, Knudsen GR, McInerney MJ, Stetzenback LD, Walter MV (ed) (1997) Manual of environmental microbiology. ASM, Washington pp 493-494

  39. Ingerslev F, Halling-Sørensen B (2000) Biodegradability properties of sulfonamides in activated sludge. Environ Toxicol Chem 19:2467–2473

    Article  CAS  Google Scholar 

  40. Jiang X, Morgan J, Doyle MP (2002) Fate of Escherichia coli O157:H7 in manure-amended soil. Appl Environ Microbiol 68:2605–2609

    Article  PubMed  CAS  Google Scholar 

  41. Junker T, Alexy R, Knacker T, Kümmerer K (2006) Biodegradability of 14 C-labeled antibiotics in a modified laboratory scale sewage treatment plant at environmentally relevant concentrations. Environ Sci Technol 40:318–324

    Article  PubMed  CAS  Google Scholar 

  42. Kay P, Blackwell PA, Boxall ABA (2005) Transport of veterinary antibiotics in overland flow following the application of slurry to arable land. Chemosphere 59:951–959

    Article  PubMed  CAS  Google Scholar 

  43. Kertesz MA, Cook AM, Leisinger T (1994) Microbial metabolism of sulfur- and phosphorus-containing xenobiotics. FEMS Microbiol Rev 15:195–215

    Article  PubMed  CAS  Google Scholar 

  44. Kotzerke A, Sharma S, Schauss K, Heuer H, Thiele-Bruhn S, Smalla K, Wilke BM, Schloter M (2008) Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure. Environ Pollut 153:315–322

    Article  PubMed  CAS  Google Scholar 

  45. Kreuzig R, Höltge S (2005) Investigations on the fate of sulfadiazine in manured soil: laboratory experiments and test plot studies. Environ Toxicol Chem 24:771–776

    Article  PubMed  CAS  Google Scholar 

  46. Kümmerer K (2003) Significance of antibiotics in the environment. J Antimicrob Chemother 52(1):5–7

    Article  PubMed  Google Scholar 

  47. Kümmerer K (2004) Pharmaceuticals in the environment-sources, fate, effects and risks. Springer, Berlin

    Google Scholar 

  48. Lane DJ (1991) 16S/23S rRNA Sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  49. Lawrence MAM, Davies NA, Edwards PA, Taylor MG, Simkiss K (2000) Can adsorption isotherms predict sediment bioavailability? Chemosphere 41:1091–1100

    Article  PubMed  CAS  Google Scholar 

  50. Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Møller K (2002) Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68(2):673–690

    Article  PubMed  CAS  Google Scholar 

  51. Loftin KA, Henny C, Adams CD, Surampali R, Mormile MR (2005) Inhibition of microbial metabolism in anaerobic lagoons by selected sulfonamides, tetracyclines, lincomycin, and tylosin tartrate. Environ Toxicol Chem 24(4):782–788

    Article  PubMed  CAS  Google Scholar 

  52. Lukow T, Dunfield PF, Liesack W (2000) Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and nontransgenic potato plants. FEMS Microbiol Ecol 32:241–247

    Article  CAS  Google Scholar 

  53. Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton

    Google Scholar 

  54. Margalef R (1958) Information theory in ecology. Gen Syst 3:36–71

    Google Scholar 

  55. Migliore L, Brambilla G, Cozzolino S, Gaudio L (1995) Effect on plants of sulphadimethoxine used in intensive farming (Panicum miliaceum, Pisum sativum and Zea mays). Agr Ecosyst Environ 52:103–110

    Article  CAS  Google Scholar 

  56. Nwosu VC (2001) Antibiotic resistance with particular reference to soil microorganisms. Res Microbiol 152(5):421–430

    Article  PubMed  CAS  Google Scholar 

  57. Pemberton JM, Schmidt R (1999) Catabolic plasmids. In: Encyclopaedia of life sciences. Wiley, Chichester. At: http://www.els.net/. doi:10.1038/npg.els.0000471. Accessed 3 May 2011

  58. Pérez S, Eichhorn P, Aga DS (2005) Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment. Environ Toxicol Chem 24:1361–1367

    Article  PubMed  Google Scholar 

  59. Phillips I, Casewell M, Cox T, De Groot B, Christian F, Jones R, Nightingale C, Preston R, Waddell J (2004) Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother 53:28–52

    Article  PubMed  CAS  Google Scholar 

  60. Philp JC, Atlas RM, Cunningham CJ (2001) Bioremediation. In: Encyclopaedia of life sciences. Wiley, Chichester. At: http://www.els.net/. doi:10.1038/npg.els.0000470. Accessed 4 May 2011

  61. Pielou EC (1975) Ecological diversity. Wiley, New York

    Google Scholar 

  62. Poirier L, Doerge D, Gaylor D, Miller M, Lorentzen R, Casciano D, Kadlubar F, Schwetz B (1999) An FDA review of sulfamethazine toxicity. Regul Toxicol Pharmacol 30:217–222

    Article  PubMed  CAS  Google Scholar 

  63. Rajić A, Reid-Smith R, Deckert AE, Dewey CE, McEwen SA (2006) Reported antibiotic use in 90 swine farms in Alberta. Can Vet J 47:446–452

    PubMed  Google Scholar 

  64. Reid BJ, MacLeod CJA, Lee PH, Morriss AWJ, Stokes JD, Semple KT (2001) A simple 14 C-respirometric method for assessing microbial catabolic potential and contaminant bioavailability. FEMS Microbiol Lett 196(2):141–146

    Article  PubMed  CAS  Google Scholar 

  65. Saif YM, Moorhead PD, Dearth RN, Jackwood DJ (1980) Observations on Alcaligenes faecalis infection in turkeys. Avian Dis 24(3):665–684

    Article  PubMed  CAS  Google Scholar 

  66. Sköld O (2001) Resistance to trimethoprim and sulfonamides. Vet Res 32:261–273

    Article  PubMed  Google Scholar 

  67. Stoob K, Singer HP, Stettler S, Hartmann N, Mueller SR, Stamm CH (2006) Exhaustive extraction of sulfonamide antibiotics from aged agricultural soils using pressurized liquid extraction. J Chromatogr A 1128:1–9

    Article  PubMed  CAS  Google Scholar 

  68. Szczepanowski R, Braun S, Riedel V, Schneiker S, Krahn I, Pühler A, Schlüter A (2005) The 120592 bp IncF plasmid pRSB107 isolated from sewage-treatment plant encodes nine different antibiotic-resistance determinants, two iron-acquisition systems and other putative virulence-associated functions. Microbiol 151:1095–1111

    Article  CAS  Google Scholar 

  69. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260

    Article  CAS  Google Scholar 

  70. Thiele-Bruhn S, Aust MO (2004) Effects of pig slurry on the sorption of sulphonamide antibiotics in soil. Arch Environ Contam Toxicol 47:31–39

    Article  PubMed  CAS  Google Scholar 

  71. Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol 35(17):3397–3406

    Article  PubMed  CAS  Google Scholar 

  72. Tralau T, Cook AM, Ruff J (2001) Map of the IncP1b Plasmid pTSA encoding the widespread genes (tsa) for p-Toluenesulfonate degradation in Comamonas testosteroni T-2. Appl Environ Microbiol 67(4):1508–1516

    Article  PubMed  CAS  Google Scholar 

  73. Vaclavik E, Halling-Sørensen B, Ingerslev F (2004) Evaluation of manometric respiration tests to assess the effects of veterinary antibiotics in soil. Chemosphere 56:667–676

    Article  PubMed  CAS  Google Scholar 

  74. Wackett LP, Ellis LBM (2006) Biodegradation of organic pollutants. In: Encyclopaedia of life sciences. Wiley, Chichester. At: http://www.els.net/. doi:10.1038/npg.els.0000469. Accessed 2 February 2011

  75. Wang Q, Guo M, Yates SR (2006) Degradation kinetics of manure-derived sulfadimethoxine in amended soil. J Agric Food Chem 54:157–163

    Article  PubMed  CAS  Google Scholar 

  76. Wellington EM, Berry A, Krsek M (2003) Resolving functional diversity in relation to microbial community structure in soil: exploiting genomics and stable isotope probing. Curr Opin Microbiol 6(3):295–301

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was carried out with funding from Consejo Nacional de Ciencia y Tecnologia from Mexico. We are thankful for the valuable comments from three anonymous reviewers and to Alejandro de las Heras for helpful discussions regarding the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Islas-Espinoza.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islas-Espinoza, M., Reid, B.J., Wexler, M. et al. Soil Bacterial Consortia and Previous Exposure Enhance the Biodegradation of Sulfonamides from Pig Manure. Microb Ecol 64, 140–151 (2012). https://doi.org/10.1007/s00248-012-0010-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0010-5

Keywords

Navigation