Skip to main content
Log in

Assessing the Viability of Bacterial Species in Drinking Water by Combined Cellular and Molecular Analyses

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The question which bacterial species are present in water and if they are viable is essential for drinking water safety but also of general relevance in aquatic ecology. To approach this question we combined propidium iodide/SYTO9 staining (“live/dead staining” indicating membrane integrity), fluorescence-activated cell sorting (FACS) and community fingerprinting for the analysis of a set of tap water samples. Live/dead staining revealed that about half of the bacteria in the tap water had intact membranes. Molecular analysis using 16S rRNA and 16S rRNA gene-based single-strand conformation polymorphism (SSCP) fingerprints and sequencing of drinking water bacteria before and after FACS sorting revealed: (1) the DNA- and RNA-based overall community structure differed substantially, (2) the community retrieved from RNA and DNA reflected different bacterial species, classified as 53 phylotypes (with only two common phylotypes), (3) the percentage of phylotpes with intact membranes or damaged cells were comparable for RNA- and DNA-based analyses, and (4) the retrieved species were primarily of aquatic origin. The pronounced difference between phylotypes obtained from DNA extracts (dominated by Betaproteobacteria, Bacteroidetes, and Actinobacteria) and from RNA extracts (dominated by Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, and Cyanobacteria) demonstrate the relevance of concomitant RNA and DNA analyses for drinking water studies. Unexpected was that a comparable fraction (about 21%) of phylotypes with membrane-injured cells was observed for DNA- and RNA-based analyses, contradicting the current understanding that RNA-based analyses represent the actively growing fraction of the bacterial community. Overall, we think that this combined approach provides an interesting tool for a concomitant phylogenetic and viability analysis of bacterial species of drinking water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  2. Bassam BJ, Caetano-Anoll G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  PubMed  CAS  Google Scholar 

  3. Berney M, Weilenmann HU, Egli T (2006) Flow-cytometric study of vital cellular functions in Escherichia coli during solar disinfection (SODIS). Microbiology 152:1719–1729

    Article  PubMed  CAS  Google Scholar 

  4. Berney M, Hammes F, Bosshard F, Weilenmann H, Egli T (2007) Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Appl Environ Microbiol 73:3283–3290

    Article  PubMed  CAS  Google Scholar 

  5. Berney M, Vital M, Hülshoff I, Weilenmann H, Egli T, Hammes F (2008) Rapid, cultivation-independent assessment of microbial viability in drinking water. Water Res 42:4010–4018

    Article  PubMed  CAS  Google Scholar 

  6. Birch L, Dawson C, Cornett J, Keer J (2001) A comparison of nucleic acid amplification techniques for the assessment of bacterial viability. Lett Appl Microbiol 33:296–301

    Article  PubMed  CAS  Google Scholar 

  7. Boulos L, Prevost M, Barbeau B, Coallier J, Desjardins R (1999) LIVE/DEAD BacLight, application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods 37:77–86

    Article  PubMed  CAS  Google Scholar 

  8. Brettar I, Labrenz M, Flavier S, Botel J, Kuosa H, Christen R, Höfle MG (2006) Identification of a Thiomicrospira denitrificans-like epsilonproteobacterium as a catalyst for autotrophic denitrification in the Central Baltic Sea. Appl Environ Microbiol 72:1364–1372

    Article  PubMed  CAS  Google Scholar 

  9. Brettar I, Höfle MG (2008) Molecular assessment of bacterial pathogens—a contribution to drinking water safety. Curr Opin Biotechnol 19:274–280

    Article  PubMed  CAS  Google Scholar 

  10. Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, Bandela AM, Cardenas E, Garrity GM, Tiedje JM (2007) The ribosomal database project (RDP-II), introducing myRDP space and quality controlled public data. Nucl Acids Res 35:169–172

    Article  Google Scholar 

  11. Czechowska K, Johnson DR, Meer JRVD (2008) Use of flow cytometric methods for single-cell analysis in environmental microbiology. Cur Opin Microbiol 11:205–212

    Article  CAS  Google Scholar 

  12. Dumont M, Harmand J, Rapaport A, Godon J (2009) Towards functional molecular fingerprints. Environ Microbiol 11:1717–1727

    Article  PubMed  CAS  Google Scholar 

  13. Eichler S, Weinbauer MG, Dominik K, Höfle MG (2004) Extraction of total RNA and DNA from bacterioplankton, chapter 108. In: Kowalchuk GA, Bruijn FJD, Head IM, Akkermans ADL, van Elsas JD (eds) Molecular microbial ecology manual. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 103–120

    Google Scholar 

  14. Eichler S, Christen R, Höltje C, Westphal P, Bötel J, Brettar I, Mehling A, Höfle MG (2006) Composition and dynamics of bacterial communities of a drinking water supply system as assessed by RNA- and DNA-based 16S rRNA gene fingerprinting. Appl Environ Microbiol 72:1858–1872

    Article  PubMed  CAS  Google Scholar 

  15. Falcioni T, Papa S, Gasol JM (2008) Evaluating the flow-cytometric nucleic acid double-staining protocol in realistic situations of planktonic bacterial death. Appl Environ Microbiol 74:1767–1779

    Article  PubMed  CAS  Google Scholar 

  16. Farrelly V, Rainey F, Stackebrandt E (1995) Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol 61:2798–2801

    PubMed  CAS  Google Scholar 

  17. Hammes F, Berney M, Wang Y, Vital M, Köster O, Egli T (2008) Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Water Res 42:269–277

    Article  PubMed  CAS  Google Scholar 

  18. Haugland R (2005) Assays for cell viability, proliferation, and function. In: The handbook: a guide to fluorescent probes and labeling technologies, 10th edn. Invitrogen Corp., USA. pp. 699–776. (http://www.invitrogen.com)

  19. Henne K, Kahlisch L, Draheim J, Brettar I, Höfle MG (2008) Polyvalent fingerprint based molecular surveillance methods for drinking water supply systems. Water Sci Tech Water Supply 8:527–532

    Article  CAS  Google Scholar 

  20. Hoefel D, Monis P, Grooby W, Andrews S, Saint C (2005) Profiling bacterial survival through a water treatment process and subsequent distribution system. J Appl Microbiol 99:175–186

    Article  PubMed  CAS  Google Scholar 

  21. Huq A, Rivera I, Colwell RR (2000) Epidemiological significance of viable but non culturable microorganisms In: Colwell RR, Grimes DJ (eds) Nonculturable Microorganisms in the Environment. American Society for Microbiology, Washington DC. pp. 301–323

  22. Joux F, Lebaron P (2000) Use of fluorescent probes to assess physiological functions of bacteria at single-cell level. Microbes Infect 2:1523–1535

    Article  PubMed  CAS  Google Scholar 

  23. Kahlisch L, Henne K, Draheim J, Brettar I, Höfle MG (2010) High-resolution in situ genotyping of Legionella pneumophila populations in drinking water by Multiple-Locus Variable-Number of Tandem Repeat Analysis (MLVA) using environmental DNA. Appl Environ Microbiol 76:6186–6195

    Article  PubMed  CAS  Google Scholar 

  24. Kahlisch L, Henne K, Groebe L, Draheim J, Höfle MG, Brettar I (2010) Molecular analysis of the bacterial drinking water community with respect to live/dead status. Water Sci Tech 61:9–14

    Article  CAS  Google Scholar 

  25. Klappenbach JA, Dunbar JM, Schmidt TM (2000) rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66:1328–1333

    Article  PubMed  CAS  Google Scholar 

  26. La Scola B, Mallet M, Grimont PAD, Raoult D (2003) Bosea eneae sp nov, Bosea massiliensis sp nov and Bosea vestrisii sp nov, isolated from hospital water supplies, and emendation of the genus Bosea (Das et al.). Int J Syst Evol Microbiol 53:15–20

    Article  PubMed  Google Scholar 

  27. Leuko S, Legat A, Fendrihan S, Stan-Lotter H (2004) Evaluation of the LIVE/DEAD BacLight Kit for detection of extremophilic Archaea and visualization of microorganisms in environmental hypersaline samples. Appl Environ Microbiol 70:6884–6886

    Article  PubMed  CAS  Google Scholar 

  28. Madigan MT, Martinko JM, Dunlap PV, Clark DP (2008) Brock biology of microorganisms, 12th edn. USA, Pearson Higher Education, New York

    Google Scholar 

  29. Mahmood S, Paton GI, Prosser JI (2005) Cultivation-independent in situ molecular analysis ofbacteria involved in degradation of pentachlorophenol in soil. Environ Microbiol 7:1349–1360

    Article  PubMed  CAS  Google Scholar 

  30. Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints, practical tools for microbial ecology. Environ Microbiol 10:1571–1581

    Article  PubMed  CAS  Google Scholar 

  31. Moreno Y, Alonso JL, Botella S, Ferrús MA, Hernández J (2004) Survival and injury of Arcobacter after artificial inoculation into drinking water. Res Microbiol 155:726–730

    Article  PubMed  CAS  Google Scholar 

  32. Nocker A, Sossa-Fernandez P, Burr MD, Camper AK (2007) Use of propidium monoazide for live/dead distinction in microbial ecology. Appl Environ Microbiol 73:5111–5117

    Article  PubMed  CAS  Google Scholar 

  33. Schwieger F, Tebbe CC (1998) A new approach to utilize PCR–single-strand-conformation polymorphism for 16s rrna gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876

    PubMed  CAS  Google Scholar 

  34. Steele HL, Streit WR (2005) Metagenomics, advances in ecology and biotechnology. FEMS Microbiol Lett 247:105–111

    Article  PubMed  CAS  Google Scholar 

  35. Weinbauer MG, Beckmann C, Höfle MG (1998) Utility of green fluorescent nucleic acid dyes and aluminum oxide membrane filters for rapid epifluorescence enumeration of soil and sediment bacteria. Appl Environ Microbiol 64:5000–5003

    PubMed  CAS  Google Scholar 

  36. Weinbauer MG, Fritz I, Wenderoth DF, Höfle MG (2002) Simultaneous extraction from bacterioplankton of total RNA and DNA suitable for quantitative structure and function analyses. Appl Environ Microbiol 68:1082–1087

    Article  PubMed  CAS  Google Scholar 

  37. Wilbanks S, Glazer A (1993) Rod structure of a phycoerythrin II-containing phycobilisome. I. Organization and sequence of the gene cluster encoding the major phycobiliprotein rod components in the genome of marine Synechococcus sp WH8020. J Biol Chem 268:1226–1235

    PubMed  CAS  Google Scholar 

  38. Wintzingerode FV, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples, pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

    Article  Google Scholar 

  39. Yentsch CM, Horan PK, Muirhead K, Dortch Q, Haugen E, Legendre L, Murphy LS, Perry MJ, Phinney DA, Pomponi SA (1983) Flow cytometry and cell sorting, a technique for analysis and sorting of aquatic particles. Limnol Oceanogr 28:1275–1280

    Article  Google Scholar 

  40. Zwart G, Crump B, Kamst-van-Agterveld MP, Hagen F, Han S (2002) Typical freshwater bacteria, an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:141–155

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from the European Commission for the HEALTHY WATER project (FOOD-CT-2006-036306). The authors are solely responsible for the content of this publication. It does not represent the opinion of the European Commission. The European Commission is not responsible for any use that might be made of data appearing therein. We thank Josefin Draheim and Julia Strömpl for outstanding technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Brettar.

Electronic Supplemental Materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 355 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahlisch, L., Henne, K., Gröbe, L. et al. Assessing the Viability of Bacterial Species in Drinking Water by Combined Cellular and Molecular Analyses. Microb Ecol 63, 383–397 (2012). https://doi.org/10.1007/s00248-011-9918-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9918-4

Keywords

Navigation