Skip to main content
Log in

Chlorophyllous and Achlorophyllous Specimens of Epipactis microphylla (Neottieae, Orchidaceae) Are Associated with Ectomycorrhizal Septomycetes, including Truffles

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Mycoheterotrophic species (i.e., achlorophyllous plants obtaining carbon from their mycorrhizal fungi) arose many times in evolution of the Neottieae, an orchid tribe growing in forests. Moreover, chlorophyllous Neottieae species show naturally occurring achlorophyllous individuals. We investigated the fungal associates of such a member of the Neottieae, Epipactis microphylla, to understand whether their mycorrhizal fungi predispose the Neottieae to mycoheterotrophy. Root symbionts were identified by sequencing the fungal ITS of 18 individuals from three orchid populations, including achlorophyllous and young, subterranean individuals. No rhizoctonias (the usual orchid symbionts) were recovered, but 78% of investigated root pieces were colonized by Tuber spp. Other Pezizales and some Basidiomycetes were also found. Using electron microscopy, we demonstrated for the first time that ascomycetes, especially truffles, form typical orchid mycorrhizae. All identified fungi (but one) belonged to taxa forming ectomycorrhizae on tree roots, and four of them were even shown to colonize surrounding trees. This is reminiscent of mycoheterotrophic orchid species that also associate with ectomycorrhizal fungi, although with higher specificity. Subterranean and achlorophyllous E. microphylla individuals thus likely rely on tree photosynthates, and a partial mycoheterotrophy in individuals plants can be predicted. We hypothesize that replacement of rhizoctonias by ectomycorrhizal symbionts in Neottieae entails a predisposition to achlorophylly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. SF Altschul TL Madden AA Schaffer JH Zhang Z Zhang W Miller DJ Lipman (1997) ArticleTitleGapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25 3389–3402 Occurrence Handle1:CAS:528:DyaK2sXlvFyhu7w%3D Occurrence Handle9254694

    CAS  PubMed  Google Scholar 

  2. R Balestrini MG Hahn A Faccio K Mendgen P Bonfante (1996) ArticleTitleDifferential localization of carbohydrate epitopes in plant cell wall in the presence and in absence of arbuscular mychorrizal fungi. Plant Physiol 111 203–213 Occurrence Handle1:CAS:528:DyaK28XivFektbc%3D Occurrence Handle12226286

    CAS  PubMed  Google Scholar 

  3. JR Barrow P Osuna (2002) ArticleTitlePhosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt. J Arid Env 51 449–459 Occurrence Handle10.1006/jare.2001.0925

    Article  Google Scholar 

  4. P Bayman LL Lebron RL Tremblay DJ Lodge (1997) ArticleTitleVariation in endophytic fungi from roots and leaves of Lepanthes (Orchidaceae). New Phytol 135 143–149 Occurrence Handle10.1046/j.1469-8137.1997.00618.x

    Article  Google Scholar 

  5. R Bergero S Perotto M Girlanda G Vidano AM Luppi (2000) ArticleTitleEricoid mycorrhizal fungi are common associates of a Mediterranean ectomycorrhizal plant (Quercus ilex). Mol Ecol 9 1639–1649 Occurrence Handle10.1046/j.1365-294x.2000.01059.x Occurrence Handle1:CAS:528:DC%2BD3cXnvV2gtb4%3D Occurrence Handle11050558

    Article  CAS  PubMed  Google Scholar 

  6. MI Bidartondo AM Kretzer EM Pine TD Bruns (2000) ArticleTitleHigh root concentration and uneven ectomycorrhizal diversity near Sarcodes sanguined (Ericaceae): a cheater that stimulates its victims? Am J Bot 87 1783–1788 Occurrence Handle11118414

    PubMed  Google Scholar 

  7. MI Bidartondo TD Bruns M Weiß C Sergio DJ Read (2003) ArticleTitleSpecialized cheating of the ectomycorrhizal symbiosis by an epiparasitic liverwort. Proc R Soc Lond B 270 835–842 Occurrence Handle12737662

    PubMed  Google Scholar 

  8. E Björkman (1960) ArticleTitle Monotropa hypopitys L.—an epiparasite on tree roots. Physiol Plant 13 308–327

    Google Scholar 

  9. P Bonfante A Genre A Faccio I Martini L Schauser J Stougaard J Webb M Parniske (2000) ArticleTitleThe Lotus japonicus LjSym4 gene is required for the successful symbiotic infection of root epidermal cells. Mol Plant Microb Interact 13 1109–1120 Occurrence Handle1:CAS:528:DC%2BD3cXntVarsrk%3D

    CAS  Google Scholar 

  10. P Bonfante (2001) ArticleTitleAt the interface between mycorrhizal fungi and plants: the structural organization of cell wall, plasma membrane and cytoskeleton. Mycota 4 45–61

    Google Scholar 

  11. KM Cameron MW Chase WM Whitten PJ Kores DC Jarrell VA Albert T Yukawa HG Hills DH Goldman (1999) ArticleTitleA phylogenetic analysis of the Orchidaceae: evidence from RBCL nucleotide sequences. Am J Bot 86 208–224

    Google Scholar 

  12. RS Currah S Hambleton EA Smreciu (1988) ArticleTitleMycorrhizae and mycorrhizal fungi of Calypso bulbosa (Orchidaceae). Am J Bot 75 739–752

    Google Scholar 

  13. RS Currah EA Smreciu S Hambleton (1990) ArticleTitleMycorrhizae and mycorrhizal fungi of boreal species of Platanthera and Coeloglossum (Orchidaceae). Can J Bot 68 1171–1181

    Google Scholar 

  14. RL Dressler (1993) Phylogeny and Classification of the Orchid Family Cambridge University Press Cambridge, UK

    Google Scholar 

  15. AH Fitter A Hodge TJ Daniel (1999) ArticleTitleResource sharing in plant–fungus communities: did the carbon move for you? Trends Ecol Evol 14 70–71 Occurrence Handle10.1016/S0169-5347(98)01540-7

    Article  Google Scholar 

  16. R Francis DJ Read (1984) ArticleTitleDirect transfer of carbon between plants connected by vesicular–arbuscular mycorrhizal mycelium. Nature 307 53–56 Occurrence Handle1:CAS:528:DyaL2cXmsFaqtg%3D%3D

    CAS  Google Scholar 

  17. M Gardes TD Bruns (1993) ArticleTitleITS primers with enhanced specificity for basidiomycetes—applications to the identification of mycorrhizae and rusts. Mol Ecol 2 113–118 Occurrence Handle1:CAS:528:DyaK3sXlslOmsro%3D Occurrence Handle8180733

    CAS  PubMed  Google Scholar 

  18. G Gebauer M Meyer (2003) ArticleTitle 15N and 13C natural abundance of autotrophic and mycoheterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol 160 209–223 Occurrence Handle10.1046/j.1469-8137.2003.00872.x Occurrence Handle1:CAS:528:DC%2BD3sXot1WitbY%3D

    Article  CAS  Google Scholar 

  19. RJ Griesbach (1979) ArticleTitleThe albino form of Epipactis helleborine. Am Orchid Soc Bull 48 808–809

    Google Scholar 

  20. RE Koske JN Gemma (1989) ArticleTitleA modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92 486–505

    Google Scholar 

  21. KA Kristiansen DL Taylor R Kjoller HN Rasmussen S Rosendahl (2001) ArticleTitleIdentification of mycorrhizal fungi from single pelotons of Dactylorhiza majalis (Orchidaceae) using single-strand conformation polymorphism and mitochondrial ribosomal large subunit DNA sequences. Mol Ecol 80 2089–2093 Occurrence Handle10.1046/j.0962-1083.2001.01324.x

    Article  Google Scholar 

  22. J Landwehr (1983) Les orchidées sauvages de Suisse et d’Europe, tome II Piantanida Lausanne

    Google Scholar 

  23. JR Leake (1994) ArticleTitleThe biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127 171–216

    Google Scholar 

  24. SL McKendrick DJ Leake DL Taylor DJ Read (2000) ArticleTitleSymbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol 145 539–548 Occurrence Handle10.1046/j.1469-8137.2000.00592.x

    Article  Google Scholar 

  25. SL McKendrick DJ Leake DL Taylor DJ Read (2002) ArticleTitleSymbiotic germination and development of myco-heterotrophic plants in nature: ontogeny of Neottia nidus-avis (L.)Rich and characterisation of its mycorrhizal fungi. New Phytol 154 233–247 Occurrence Handle10.1046/j.1469-8137.2002.00372.x

    Article  Google Scholar 

  26. B Montanini M Betti AJ Marquez R Balestrini P Bonfante S Ottonello (2003) ArticleTitleDistinctive properties and expression profiles of glutamine synthetase from a plant symbiotic fungus. Biochem J 373 357–368 Occurrence Handle10.1042/BJ20030152 Occurrence Handle1:CAS:528:DC%2BD3sXmsFGrt78%3D Occurrence Handle12683951

    Article  CAS  PubMed  Google Scholar 

  27. NCBI Blast page, http://www.ncbi.nlm.nih.gov/blast/Blast.cgi

  28. K O’Donnell (1993) Fusarium and its near relatives. DR Reynolds JW Taylor (Eds) The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics CAB International Wallingford 225–233

    Google Scholar 

  29. JC Pargney A Brimont (1995) ArticleTitleProduction of concentrated polyphenols by the root cap cells of Corylus associated with Tuber—ultrastructural study and element localization using electron-energy-loss spectroscopy and imaging. Trees 9 149–157

    Google Scholar 

  30. RL Peterson P Bonfante A Faccio Y Uetake (1996) ArticleTitleThe interface between fungal hyphae and orchid protocorm cells. Can J Bot 74 1861–1870

    Google Scholar 

  31. MM Piercey MN Thormann RS Currah (2002) ArticleTitleSaprobic characteristics of three fungal taxa from ericalean roots and their association with the roots of Rhododendron groenlandicum and Picea mariana in culture. Mycorrhiza 12 175–180 Occurrence Handle10.1007/s00572-002-0166-9 Occurrence Handle1:STN:280:DC%2BD38vjt1WrtQ%3D%3D Occurrence Handle12189471

    Article  CAS  PubMed  Google Scholar 

  32. I Platner IR Hall (1995) ArticleTitleParasitism of nonhost plants by the mycorrhizal fungus Tuber melanosporum. Mycol Res 99 1367–1370

    Google Scholar 

  33. HN Rasmussen (1995) Terrestrial Orchids—from Seed to Mycotrophic Plant Cambridge University Press Cambridge, UK

    Google Scholar 

  34. H.N Rasmussen (2002) ArticleTitleRecent developments in the study of orchid mycorrhiza. Plant Soil 244 149–163 Occurrence Handle10.1023/A:1020246715436 Occurrence Handle1:CAS:528:DC%2BD38XntFGrtL0%3D

    Article  CAS  Google Scholar 

  35. D Robinson A Fitter (1999) ArticleTitleThe magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. J Exp Bot 50 9–13 Occurrence Handle10.1093/jexbot/50.330.9 Occurrence Handle1:CAS:528:DyaK1MXpsVOhtQ%3D%3D

    Article  CAS  Google Scholar 

  36. JC Roland B Vian (1991) General preparation and staining of thin sections. JL Hall C Hawes (Eds) Electron Microscopy of Plant Cells Cambridge University Press Cambridge, UK 1–66

    Google Scholar 

  37. A Salmia (1988) ArticleTitleEndomycorrhizal fungus in chlorophyll-free and green forms of the terrestrial orchid Epipactis helleborine. Karstenia 28 3–18

    Google Scholar 

  38. A Salmia (1989) ArticleTitleGeneral morphology and anatomy of chlorophyll-free and green forms of Epipactis helleborine (Orchidaceae). Ann Bot Fennici 26 95–105

    Google Scholar 

  39. S Scannerini P Bonfante (1983) ArticleTitleComparative ultrastructural analysis of mycorrhizal associations. Can J Bot 61 917–943

    Google Scholar 

  40. C Scappaticci G Scappaticci (1998) ArticleTitle Epipactis microphylla (Ehrhardt) Swartz lusus rosea. Cah Soc Fr Orch 4 68–69

    Google Scholar 

  41. A Scrugli S Riess F Melis (1986) ArticleTitleContributo alla conoscenza delle micorrize nelle Orchidaceae della Sardegna. Mic Ital 1 61–68

    Google Scholar 

  42. MA Selosse R Bauer B Moyersoen (2002) ArticleTitleBasal hymenomycetes belonging to the Sebacinaceae are ectomycorrhizal on temperate deciduous trees in silva: microscopic and molecular evidence. New Phytol 155 183–195 Occurrence Handle10.1046/j.1469-8137.2002.00442.x Occurrence Handle1:CAS:528:DC%2BD38XlsF2mtL0%3D

    Article  CAS  Google Scholar 

  43. MA Selosse M Weiß JL Jany A Tillier (2002) ArticleTitleCommunities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis (L.) L.C.M. Rich. and neighbouring tree ectomycorrhizae. Mol Ecol 11 1831–1844 Occurrence Handle10.1046/j.1365-294X.2002.01553.x Occurrence Handle1:CAS:528:DC%2BD38XnvVWhtrg%3D Occurrence Handle12207732

    Article  CAS  PubMed  Google Scholar 

  44. SW Simard DA Perry MD Jones DD Myrold DM Durall R Molina (1997) ArticleTitleNet transfer of carbon between ectomycorrhizal tree species in the field. Nature 388 579–582 Occurrence Handle10.1038/41557 Occurrence Handle1:CAS:528:DyaK2sXlt1ejurk%3D

    Article  CAS  Google Scholar 

  45. SE Smith DJ Read (1997) Mycorrhizal Symbiosis Academic Press New York

    Google Scholar 

  46. E Soragni A Bolchi R Balestrini C Gambaretto R Percudani P Bonfante S Ottonello (2001) ArticleTitleA nutrient-regulated, dual localization phospholipase A2 in the symbiotic fungus Tuber borchii. EMBO J 20 5079–5090 Occurrence Handle10.1093/emboj/20.18.5079 Occurrence Handle1:CAS:528:DC%2BD3MXns1Ghsr8%3D Occurrence Handle11566873

    Article  CAS  PubMed  Google Scholar 

  47. DL Taylor TD Bruns (1997) ArticleTitleIndependent, specialized invasions of ectomycorrhizal mutualism by two non photosynthetic orchids. Proc Natl Acad Sci USA 94 4510–4515 Occurrence Handle10.1073/pnas.94.9.4510 Occurrence Handle1:CAS:528:DyaK2sXjtV2js70%3D Occurrence Handle9114020

    Article  CAS  PubMed  Google Scholar 

  48. DL Taylor TD Bruns (1999) ArticleTitlePopulation, habitat and genetic correlates of mycorrhizal specialization in the cheating orchids Corallorhiza maculata and C. mertensiana. Mol Ecol 8 1719–1732 Occurrence Handle10.1046/j.1365-294x.1999.00760.x Occurrence Handle10583834

    Article  PubMed  Google Scholar 

  49. DL Taylor TD Bruns JR Leake D Read (2002) Mycorrhizal specificity and function in myco-heterotrophic plants. MGA Van der Heijden I Sanders (Eds) Mycorrhizal Ecology Springer Verlag Berlin 375–413

    Google Scholar 

  50. DL Taylor TD Bruns TM Szaro SA Hodges (2003) ArticleTitleDivergence in mycorrhizal specialization within Hexalectris spicata (Orchidaceae), a nonphotosynthetic desert orchid. Am J Bot 90 1168–1179 Occurrence Handle1:CAS:528:DC%2BD3sXntlKit7k%3D

    CAS  Google Scholar 

  51. T Vrålstad E Myhre T Schumacher (2002) ArticleTitleMolecular diversity and phylogenetic affinities of symbiotic root-associated ascomycetes of the Helotiales in burnt and metal-polluted habitats. New Phytol 155 131–148 Occurrence Handle10.1046/j.1469-8137.2002.00444.x

    Article  Google Scholar 

  52. CS Yang RP Korf (1985) ArticleTitle Ascorhizoctonia gen. nov. and Complexipes emend., two genera for anamorphs of the species assigned to Tricharina (Discomycetes). Mycotaxon 23 457–481 Occurrence Handle1:STN:280:BimC3srgslE%3D

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to F. Dusak and P. Pernot (Société Française d’Orchidophilie) for access to population C. We thank A. Dettai, A. Tillier and S. Tillier (Muséum National d’Histoire Naturelle), as well as D. Marsh and C. Saison for their constant help. We thank M. Bidartondo for helpful suggestions and providing the ITS4tul primer. We also thank an anonymous referee for careful remarks on the submitted version of this paper. The research was funded by the Muséum National d’Histoire Naturelle (Service de Systématique Moléculaire) and the Société Française d’Orchidophilie (M.-A. Selosse) and the Strategic Programme CNR-Regioni on Tuber (P. Bonfante).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-A. Selosse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selosse, MA., Faccio, A., Scappaticci, G. et al. Chlorophyllous and Achlorophyllous Specimens of Epipactis microphylla (Neottieae, Orchidaceae) Are Associated with Ectomycorrhizal Septomycetes, including Truffles. Microb Ecol 47, 416–426 (2004). https://doi.org/10.1007/s00248-003-2034-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-003-2034-3

Keywords

Navigation