Skip to main content

Advertisement

Log in

Optimization of MRI-based scoring scales of brain injury severity in children with unilateral cerebral palsy

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Several scoring systems for measuring brain injury severity have been developed to standardize the classification of MRI results, which allows for the prediction of functional outcomes to help plan effective interventions for children with cerebral palsy.

Objective

The aim of this study is to use statistical techniques to optimize the clinical utility of a recently proposed template-based scoring method by weighting individual anatomical scores of injury, while maintaining its simplicity by retaining only a subset of scored anatomical regions.

Materials and methods

Seventy-six children with unilateral cerebral palsy were evaluated in terms of upper limb motor function using the Assisting Hand Assessment measure and injuries visible on MRI using a semiquantitative approach. This cohort included 52 children with periventricular white matter injury and 24 with cortical and deep gray matter injuries. A subset of the template-derived cerebral regions was selected using a data-driven region selection algorithm. Linear regression was performed using this subset, with interaction effects excluded.

Results

Linear regression improved multiple correlations between MRI-based and Assisting Hand Assessment scores for both periventricular white matter (R squared increased to 0.45 from 0, P < 0.0001) and cortical and deep gray matter (0.84 from 0.44, P < 0.0001) cohorts. In both cohorts, the data-driven approach retained fewer than 8 of the 40 template-derived anatomical regions.

Conclusion

The equal or better prediction of the clinically meaningful Assisting Hand Assessment measure using fewer anatomical regions highlights the potential of these developments to enable enhanced quantification of injury and prediction of patient motor outcome, while maintaining the clinical expediency of the scoring approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kuban KCK, Leviton A (1994) Cerebral palsy. N Engl J Med 330:188–195

    Article  CAS  PubMed  Google Scholar 

  2. Oskoui M, Coutinho F, Dykeman J et al (2013) An update on the prevalence of cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol 55:509–519

    Article  PubMed  Google Scholar 

  3. Bax M, Frcp DM, Rosenbaum P et al (2005) Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol 47:571–576

    Article  PubMed  Google Scholar 

  4. Himmelmann K, Uvebrant P (2011) Function and neuroimaging in cerebral palsy: a population-based study. Dev Med Child Neurol 53:516–521

    Article  PubMed  Google Scholar 

  5. Krägeloh-Mann I, Horber V (2007) The role of magnetic resonance imaging in elucidating the pathogenesis of cerebral palsy: a systematic review. Dev Med Child Neurol 49:144–151

    Article  PubMed  Google Scholar 

  6. Hoon AH, Vasconcellos Faria A (2010) Pathogenesis, neuroimaging and management in children with cerebral palsy born preterm. Dev Disabil Res Rev 16:302–312

    Article  PubMed Central  PubMed  Google Scholar 

  7. Palmer FB (2004) Strategies for the early diagnosis of cerebral palsy. J Pediatr 145:S8–S11

    Article  PubMed  Google Scholar 

  8. Feys H, Eyssen M, Jaspers E et al (2010) Relation between neuroradiological findings and upper limb function in hemiplegic cerebral palsy. Eur J Paediatr Neurol 14:169–177

    Article  PubMed  Google Scholar 

  9. Korzeniewski SJ, Birbeck G, DeLano MC et al (2008) A systematic review of neuroimaging for cerebral palsy. J Child Neurol 23:216–227

    Article  PubMed  Google Scholar 

  10. Shiran SI, Weinstein M, Sirota-Cohen C et al (2014) MRI-based radiologic scoring system for extent of brain injury in children with hemiplegia. AJNR Am J Neuroradiol 35:2388–2396

    Article  CAS  PubMed  Google Scholar 

  11. Kidokoro H, Neil JJ, Inder TE (2013) New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. AJNR Am J Neuroradiol 34:2208–2214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Inder TE, Wells SJ, Mogridge NB et al (2003) Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. J Pediatr 143:171–179

    Article  PubMed  Google Scholar 

  13. Sie LTL, Hart AAM, van Hof J et al (2005) Predictive value of neonatal MRI with respect to late MRI findings and clinical outcome. A study in infants with periventricular densities on neonatal ultrasound. Neuropediatrics 36:78–89

    Article  CAS  PubMed  Google Scholar 

  14. Miller SP, Ferriero DM, Leonard C et al (2005) Early brain injury in premature newborns detected with magnetic resonance imaging is associated with adverse early neurodevelopmental outcome. J Pediatr 147:609–616

    Article  PubMed  Google Scholar 

  15. Fiori S, Cioni G, Klingels K et al (2014) Reliability of a novel, semi-quantitative scale for classification of structural brain magnetic resonance imaging in children with cerebral palsy. Dev Med Child Neurol 56:839–845

    Article  PubMed  Google Scholar 

  16. Skiöld B, Eriksson C, Eliasson A-C et al (2013) General movements and magnetic resonance imaging in the prediction of neuromotor outcome in children born extremely preterm. Early Hum Dev 89:467–472

    Article  PubMed  Google Scholar 

  17. Kulak W, Sobaniec W, Kubas B et al (2007) Spastic cerebral palsy: clinical magnetic resonance imaging correlation of 129 children. J Child Neurol 22:8–14

    Article  PubMed  Google Scholar 

  18. Yokochi K, Aiba K, Horie M et al (2008) Magnetic resonance imaging in children with spastic diplegia: correlation with the severity of their motor and mental abnormality. Dev Med Child Neurol 33:18–25

    Article  Google Scholar 

  19. Cioni G (2000) Correlation between visual function, neurodevelopmental outcome, and magnetic resonance imaging findings in infants with periventricular leucomalacia. Arch Dis Child Fetal Neonatal Ed 82:F134–F140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Mercuri E, Jongmans M, Bouza H et al (1999) Congenital hemiplegia in children at school age: assessment of hand function in the non-hemiplegic hand and correlation with MRI. Neuropediatrics 30:8–13

    Article  CAS  PubMed  Google Scholar 

  21. De Vries LS, Rademaker KJ, Groenendaal F et al (1998) Correlation between neonatal cranial ultrasound, MRI in infancy and neurodevelopmental outcome in infants with a large intraventricular haemorrhage with or without unilateral parenchymal involvement. Neuropediatrics 29:180–188

    Article  PubMed  Google Scholar 

  22. Boyd RN, Ziviani J, Sakzewski L et al (2013) COMBIT: protocol of a randomised comparison trial of COMbined modified constraint induced movement therapy and bimanual intensive training with distributed model of standard upper limb rehabilitation in children with congenital hemiplegia. BMC Neurol 13:68

    Article  PubMed Central  PubMed  Google Scholar 

  23. Boyd RN, Mitchell LE, James ST et al (2013) Move it to improve it (Mitii): study protocol of a randomised controlled trial of a novel web-based multimodal training program for children and adolescents with cerebral palsy. BMJ Open 3. doi: 10.1136/bmjopen-2013-002853

  24. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. 3-D proportional system: an approach to cerebral imaging. Thieme, New York

    Google Scholar 

  25. Krumlinde-Sundholm L, Holmefur M, Kottorp A et al (2007) The Assisting Hand Assessment: current evidence of validity, reliability, and responsiveness to change. Dev Med Child Neurol 49:259–264

    Article  PubMed  Google Scholar 

  26. Rickard T, Romero S, Basso G et al (2000) The calculating brain: an fMRI study. Neuropsychologia 38:325–335

    Article  CAS  PubMed  Google Scholar 

  27. Holmström L, Vollmer B, Tedroff K et al (2010) Hand function in relation to brain lesions and corticomotor-projection pattern in children with unilateral cerebral palsy. Dev Med Child Neurol 52:145–152

    Article  PubMed  Google Scholar 

  28. Aisen ML, Kerkovich D, Mast J et al (2011) Cerebral palsy: clinical care and neurological rehabilitation. Lancet Neurol 10:844–852

    Article  PubMed  Google Scholar 

  29. The R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing http://www.blopig.com/blog/2013/07/citing-r-packages-in-your-thesispaperassignments/)

  30. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  Google Scholar 

  31. Sugiura N (2007) Further analysts of the data by Akaike’s information criterion and the finite corrections. Commun Stat Theory Methods 7:13–26

    Article  Google Scholar 

  32. Hikosaka O, Sakamoto M, Usui S (1989) Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements. J Neurophysiol 61:780–798

    CAS  PubMed  Google Scholar 

  33. Herrero M-T, Barcia C, Navarro JM (2002) Functional anatomy of thalamus and basal ganglia. Childs Nerv Syst 18:386–404

    Article  PubMed  Google Scholar 

  34. Doya K (2000) Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr Opin Neurobiol 10:732–739

    Article  CAS  PubMed  Google Scholar 

  35. Takakusaki K, Saitoh K, Harada H et al (2004) Role of basal ganglia-brainstem pathways in the control of motor behaviors. Neurosci Res 50:137–151

    Article  CAS  PubMed  Google Scholar 

  36. Wahl M, Lauterbach-Soon B, Hattingen E et al (2007) Human motor corpus callosum: topography, somatotopy, and link between microstructure and function. J Neurosci 27:12132–12138

    Article  CAS  PubMed  Google Scholar 

  37. Barkovich AJ, Guerrini R, Kuzniecky RI et al (2012) A developmental and genetic classification for malformations of cortical development: update 2012. Brain 135:1348–1369

    Article  PubMed Central  PubMed  Google Scholar 

  38. Leong S (1997) Is there a zone of vascular vulnerability in the fetal brain stem? Neurotoxicol Teratol 19:265–275

    Article  CAS  PubMed  Google Scholar 

  39. Hetts SW, Sherr EH, Chao S et al (2006) Anomalies of the corpus callosum: an MR analysis of the phenotypic spectrum of associated malformations. AJR Am J Roentgenol 187:1343–1348

    Article  PubMed  Google Scholar 

  40. Stoerig P (2006) Blindsight, conscious vision, and the role of primary visual cortex. Prog Brain Res 155:217–234

    Article  PubMed  Google Scholar 

  41. Owen AM, Downes JJ, Sahakian BJ et al (1990) Planning and spatial working memory following frontal lobe lesions in man. Neuropsychologia 28:1021–1034

    Article  CAS  PubMed  Google Scholar 

  42. Eichenbaum H, Yonelinas AP, Ranganath C (2007) The medial temporal lobe and recognition memory. Annu Rev Neurosci 30:123–152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Rose S, Guzzetta A, Pannek K et al (2011) MRI structural connectivity, disruption of primary sensorimotor pathways, and hand function in cerebral palsy. Brain Connect 1:309–316

    Article  PubMed  Google Scholar 

  44. Chapman SB, Max JE, Gamino JF et al (2003) Discourse plasticity in children after stroke: age at injury and lesion effects. Pediatr Neurol 29:34–41. doi: 10.1016/S0887-8994(03)00012-2

  45. Belsky J, Pluess M (2009) The nature (and nurture?) of plasticity in early human development. Perspect Psychol Sci 4:345–351

    Article  PubMed  Google Scholar 

  46. Fiori S, Guzzetta A, Pannek K et al (2015) Validity of semi-quantitative scale for brain MRI in unilateral cerebral palsy due to periventricular white matter lesions: relationship with hand sensorimotor function and structural connectivity. NeuroImage Clin 8:104–109

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Alex Pagnozzi is supported by the Australian Postgraduate Award (APA) from the University of Queensland and a stipend from the Commonwealth Scientific Industrial and Research Organisation (CSIRO). Roslyn Boyd is supported by a NHMRC Career Development Fellowship (1037220) and a NHMRC Project Grant COMBIT (1003887). No other authors have potential conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex M. Pagnozzi.

Ethics declarations

Compliance with Ethical Standard

Conflicts of interest

None

Electronic supplementary material

Below is the link to the electronic supplementary material.

Suppl Fig 1

(GIF 137 kb)

High Resolution (TIFF 2409 kb)

Suppl Fig 2

(GIF 152 kb)

High Resolution (TIFF 2726 kb)

ESM 1

(DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagnozzi, A.M., Fiori, S., Boyd, R.N. et al. Optimization of MRI-based scoring scales of brain injury severity in children with unilateral cerebral palsy. Pediatr Radiol 46, 270–279 (2016). https://doi.org/10.1007/s00247-015-3473-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-015-3473-y

Keywords

Navigation