Skip to main content
Log in

The role of CT angiography in the evaluation of pediatric renovascular hypertension

  • Pictorial Essay
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Historically, the evaluation of renovascular hypertension has been accomplished by US, renal scintigraphy and digital subtraction angiography. Based on its high accuracy reported in adults renal CT angiography (CTA) with pediatric-appropriate low radiation dose techniques has become an important tool in the workup of renovascular hypertension in children. Renal CTA has several advantages over more conventional imaging modalities, including rapid and non-invasive acquisition, high resolution and easy reproducibility. Additionally, in our experience high-quality renal CTA can be performed using low-dose radiation exposures and can be acquired without sedation in most instances. This article illustrates by examples the usefulness of renal CTA for diagnosis of childhood renovascular hypertension and provides an overview of renal CTA findings in the most common childhood renovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bayazit AK, Yalcinkaya F, Cakar N et al (2007) Reno-vascular hypertension in childhood: a nationwide survey. Pediatr Nephrol 22:1327–1333

    Article  PubMed  Google Scholar 

  2. Bartosh SM, Aronson AJ (1999) Childhood hypertension. An update on etiology, diagnosis, and treatment. Pediatr Clin N Am 46:235–252

    Article  CAS  Google Scholar 

  3. Dillon MJ (1997) The diagnosis of renovascular disease. Pediatr Nephrol 11:366–372

    Article  PubMed  CAS  Google Scholar 

  4. Stanley JC, Criado E, Upchurch GR Jr et al (2006) Pediatric renovascular hypertension: 132 primary and 30 secondary operations in 97 children. J Vasc Surg 44:1219–1228

    Article  PubMed  Google Scholar 

  5. Ghabril R (2010) Renovascular hypertension in children. J Med Liban 58:146–148

    PubMed  Google Scholar 

  6. Tullus K, Brennan E, Hamilton G et al (2008) Renovascular hypertension in children. Lancet 371:1453–1463

    Article  PubMed  CAS  Google Scholar 

  7. Srinivasan A, Krishnamurthy G, Fontalvo-Herazo L et al (2011) Spectrum of renal findings in pediatric fibromuscular dysplasia and neurofibromatosis type 1. Pediatr Radiol 41:308–316

    Article  PubMed  Google Scholar 

  8. Srinivasan A, Krishnamurthy G, Fontalvo-Herazo L et al (2010) Angioplasty for renal artery stenosis in pediatric patients: an 11-year retrospective experience. J Vasc Interv Radiol 21:1672–1680

    Article  PubMed  Google Scholar 

  9. McTaggart SJ, Gulati S, Walker RG et al (2000) Evaluation and long-term outcome of pediatric renovascular hypertension. Pediatr Nephrol 14:1022–1029

    Article  PubMed  CAS  Google Scholar 

  10. Tullus K (2011) Renal artery stenosis: is angiography still the gold standard in 2011? Pediatr Nephrol 26:833–837

    Article  PubMed  Google Scholar 

  11. Vo NJ, Hammelman BD, Racadio JM et al (2006) Anatomic distribution of renal artery stenosis in children: implications for imaging. Pediatr Radiol 36:1032–1036

    Article  PubMed  Google Scholar 

  12. Miksys N, Gordon CL, Thomas K et al (2010) Estimating effective dose to pediatric patients undergoing interventional radiology procedures using anthropomorphic phantoms and MOSFET dosimeters. AJR Am J Roentgenol 194:1315–1322

    Article  PubMed  Google Scholar 

  13. Glockner JF, Vrtiska TJ (2007) Renal MR and CT angiography: current concepts. Abdom Imaging 32:407–420

    Article  PubMed  Google Scholar 

  14. Sabharwal R, Vladica P, Coleman P (2007) Multidetector spiral CT renal angiography in the diagnosis of renal artery fibromuscular dysplasia. Eur J Radiol 61:520–527

    Article  PubMed  Google Scholar 

  15. Cho E-S, Yu J-S, Ahn J-H et al (2012) CT angiography of the renal arteries: comparison of lower-tube-voltage CTA with moderate-concentration iodinated contrast material and conventional CTA. AJR Am J Roentgenol 199:96–102

    Article  PubMed  Google Scholar 

  16. Vade A, Agrawal R, Lim-Dunham J et al (2002) Utility of computed tomographic renal angiogram in the management of childhood hypertension. Pediatr Nephrol 17:741–747

    Article  PubMed  Google Scholar 

  17. Hellinger JC, Pena A, Poon M et al (2010) Pediatric computed tomographic angiography: imaging the cardiovascular system gently. Radiol Clin N Am 48:439–467

    Article  PubMed  Google Scholar 

  18. Boone JM, Strauss KJ, Cody DD et al (2011) Report of AAPM Task Group 204. Size-specific dose estimates (SSDE) in pediatric and adult body CT examinations. Available via http://www.aapm.org/pubs/reports/rpt_204.pdf. Accessed 15 Oct 2012

  19. Epelman M, Kreiger PA, Servaes S et al (2010) Current imaging of prenatally diagnosed congenital lung lesions. Semin Ultrasound CT MR 31:141–157

    Article  PubMed  Google Scholar 

  20. Fleischmann D, Kamaya A (2009) Optimal vascular and parenchymal contrast enhancement: the current state of the art. Radiol Clin N Am 47:13–26

    Article  PubMed  Google Scholar 

  21. Kalva SP, Sahani DV, Hahn PF et al (2006) Using the K-edge to improve contrast conspicuity and to lower radiation dose with a 16-MDCT: a phantom and human study. J Comput Assist Tomogr 30:391–397

    Article  PubMed  Google Scholar 

  22. Hellinger JC, Medina LS, Epelman M (2010) Pediatric advanced imaging and informatics: state of the art. Semin Ultrasound CT MR 31:171–193

    Article  PubMed  Google Scholar 

  23. Cody DD (2002) AAPM/RSNA physics tutorial for residents: topics in CT. Image processing in CT. Radiographics 22:1255–1268

    PubMed  Google Scholar 

  24. Fishman EK, Ney DR, Heath DG et al (2006) Volume rendering versus maximum intensity projection in CT angiography: what works best, when, and why. Radiographics 26:905–922

    Article  PubMed  Google Scholar 

  25. Slovut DP, Olin JW (2004) Fibromuscular dysplasia. N Engl J Med 350:1862–1871

    Article  PubMed  CAS  Google Scholar 

  26. Das C, Neyaz Z, Thapa P et al (2007) Fibromuscular dysplasia of the renal arteries: a radiological review. Int Urol Nephrol 39:233–238

    Article  PubMed  Google Scholar 

  27. Fossali E, Signorini E, Intermite RC et al (2000) Renovascular disease and hypertension in children with neurofibromatosis. Pediatr Nephrol 14:806–810

    Article  PubMed  CAS  Google Scholar 

  28. Hamilton SJ, Friedman JM (2000) Insights into the pathogenesis of neurofibromatosis 1 vasculopathy. Clin Genet 58:341–344

    Article  PubMed  CAS  Google Scholar 

  29. Riccardi VM (2000) The vasculopathy of NF1 and histogenesis control genes. Clin Genet 58:345–347

    Article  PubMed  CAS  Google Scholar 

  30. Connolly B, Kelehan P, O’Brien N et al (1994) The echogenic thalamus in hypoxic ischaemic encephalopathy. Pediatr Radiol 24:268–271

    Article  PubMed  CAS  Google Scholar 

  31. Connolly JE, Wilson SE, Lawrence PL et al (2002) Middle aortic syndrome: distal thoracic and abdominal coarctation, a disorder with multiple etiologies. J Am Coll Surg 194:774–781

    Article  PubMed  Google Scholar 

  32. Delis KT, Gloviczki P (2005) Middle aortic syndrome: from presentation to contemporary open surgical and endovascular treatment. Perspect Vasc Surg Endovasc Ther 17:187–203

    Article  PubMed  Google Scholar 

  33. Rose C, Wessel A, Pankau R et al (2001) Anomalies of the abdominal aorta in Williams-Beuren syndrome—another cause of arterial hypertension. Eur J Pediatr 160:655–658

    PubMed  CAS  Google Scholar 

  34. Radford DJ, Pohlner PG (2000) The middle aortic syndrome: an important feature of Williams’ syndrome. Cardiol Young 10:597–602

    Article  PubMed  CAS  Google Scholar 

  35. Pober BR, Lacro RV, Rice C et al (1993) Renal findings in 40 individuals with Williams syndrome. Am J Med Genet 46:271–274

    Article  PubMed  CAS  Google Scholar 

  36. Salerno AE, Marsenic O, Meyers KE et al (2010) Vascular involvement in tuberous sclerosis. Pediatr Nephrol 25:1555–1561

    Article  PubMed  Google Scholar 

  37. Gulati A, Bagga A (2010) Large vessel vasculitis. Pediatr Nephrol 25:1037–1048

    Article  PubMed  Google Scholar 

  38. Visrutaratna P, Srisuwan T, Sirivanichai C (2009) Pediatric renovascular hypertension in Thailand: CT angiographic findings. Pediatr Radiol 39:1321–1326

    Article  PubMed  Google Scholar 

  39. Gotway MB, Araoz PA, Macedo TA et al (2005) Imaging findings in Takayasu’s arteritis. AJR Am J Roentgenol 184:1945–1950

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was awarded with Honorable Mention as an educational poster at the Society for Pediatric Radiology 55th Annual Meeting & Postgraduate Course 2012, San Francisco, CA.

We would like to thank Xiaowei (Winnie) Zhu, MS, for her help and contribution to this manuscript.

Conflicts of interest

None.

Disclosure

The authors listed below have indicated they have no relevant financial relationships or potential conflicts of interest related to the material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Epelman.

Additional information

CME activity This article has been selected as the CME activity for the current month. Please visit the SPR Web site at www.pedrad.org on the Education page and follow the instructions to complete this CME activity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurian, J., Epelman, M., Darge, K. et al. The role of CT angiography in the evaluation of pediatric renovascular hypertension. Pediatr Radiol 43, 490–501 (2013). https://doi.org/10.1007/s00247-012-2567-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-012-2567-z

Keywords

Navigation