Skip to main content

Advertisement

Log in

Advanced functional thoracic imaging in children: from basic concepts to clinical applications

  • Minisymposium
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

The lungs and airways are organs involved in fairly complex body functions, including ventilation, perfusion, respiratory motion and gas exchange. Imaging evaluation of the pediatric thorax is challenging because involuntary, nonsynchronous respiratory motions and cardiac pulsations degrade image quality appreciably. The extraction of clinically useful functional information from noninvasive imaging methods has been realized even in children thanks to recent technical advancements in thoracic imaging modalities. In this article, advanced functional thoracic imaging techniques in children, focusing on CT and MRI, will be explored from basic concepts to clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Grant FD, Treves ST (2011) Nuclear medicine and molecular imaging of the pediatric chest: current practical imaging assessment. Radiol Clin N Am 49:1025–1051

    Article  PubMed  Google Scholar 

  2. Puderbach M, Kauczor HU (2006) Assessment of lung function in children by cross-sectional imaging: techniques and clinical applications. Pediatr Radiol 36:192–204

    Article  PubMed  Google Scholar 

  3. Lee EY (2008) Advancing CT and MR imaging of the lungs and airways in children: imaging into practice. Pediatr Radiol 38(Suppl 2):S208–S212

    Article  PubMed  Google Scholar 

  4. Lell MM, May M, Deak P et al (2012) High-pitch spiral computed tomography: effect on image quality and radiation dose in pediatric chest computed tomography. Invest Radiol 46:116–123

    Article  Google Scholar 

  5. Mueller KS, Long FR, Flucke RL et al (2010) Volume-monitored chest CT: a simplified method for obtaining motion-free images near full inspiratory and end expiratory lung volumes. Pediatr Radiol 40:1663–1669

    Article  PubMed  Google Scholar 

  6. Goo HW (2010) State-of-the-art CT imaging techniques for congenital heart disease. Korean J Radiol 11:4–18

    Article  PubMed  Google Scholar 

  7. Goo HW, Kim HJ (2006) Detection of air trapping on inspiratory and expiratory phase images obtained by 0.3-second cine CT in the lungs of free-breathing young children. AJR 187:1019–1023

    Article  PubMed  Google Scholar 

  8. Goo HW (2011) Cardiac MDCT in children: CT technology overview and interpretation. Radiol Clin N Am 49:997–1010

    Article  PubMed  Google Scholar 

  9. Wagnetz U, Roberts HC, Chung T et al (2010) Dynamic airway evaluation with volume CT: initial experience. Can Assoc Radiol J 61:90–97

    Article  PubMed  Google Scholar 

  10. Bonnel AS, Song SM, Kesavarju K et al (2004) Quantitative air-trapping analysis in children with mild cystic fibrosis lung disease. Pediatr Pulmonol 38:396–405

    Article  PubMed  Google Scholar 

  11. Sarria EE, Mattiello R, Rao L et al (2012) Quantitative assessment of chronic lung disease of infancy using computed tomography. Eur Respir J 39:992–999

    Article  PubMed  CAS  Google Scholar 

  12. Goo HW (2010) Initial experience of dual-energy lung perfusion CT using a dual-source CT system in children. Pediatr Radiol 40:1536–1544

    Article  PubMed  Google Scholar 

  13. Zhang LJ, Wang ZJ, Zhou CS et al (2012) Evaluation of pulmonary embolism in pediatric patients with nephrotic syndrome with dual energy CT pulmonary angiography. Acad Radiol 19:341–348

    Article  PubMed  Google Scholar 

  14. Goo HW, Chae EJ, Seo JB et al (2008) Xenon ventilation CT using a dual-source dual-energy technique: dynamic ventilation abnormality in a child with bronchial atresia. Pediatr Radiol 38:1113–1116

    Article  PubMed  Google Scholar 

  15. Goo HW, Yang DH, Hong SJ et al (2010) Xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans: correlation of xenon and CT density values with pulmonary function test results. Pediatr Radiol 40:1490–1497

    Article  PubMed  Google Scholar 

  16. Goo HW, Yang DH, Kim N et al (2011) Collateral ventilation to congenital hyperlucent lung lesions assessed on xenon-enhanced dynamic dual-energy CT: an initial experience. Korean J Radiol 12:25–33

    Article  PubMed  Google Scholar 

  17. Goo HW, Yu J (2011) Redistributed regional ventilation after the administration of a bronchodilator demonstrated on xenon-inhaled dual-energy CT in a patient with asthma. Korean J Radiol 12:386–389

    Article  PubMed  Google Scholar 

  18. Goo JM (2011) A computer-aided diagnosis for evaluating lung nodules on chest CT: the current status and perspective. Korean J Radiol 12:145–155

    Article  PubMed  Google Scholar 

  19. Helm EJ, Silva CT, Roberts HC et al (2009) Computer-aided detection for the identification of pulmonary nodules in pediatric oncology patients: initial experience. Pediatr Radiol 39:685–593

    Article  PubMed  Google Scholar 

  20. Goo HW, Song KS, Lee EH et al (1997) Diagnostic value of contrast-enhanced dynamic CT in predicting the malignancy of solitary pulmonary nodules. J Korean Radiol Soc 36:431–436

    Google Scholar 

  21. Yi CA, Lee KS, Kim EA et al (2004) Solitary pulmonary nodules: dynamic enhanced multi-detector row CT study and comparison with vascular endothelial growth factor and microvessel density. Radiology 233:191–199

    Article  PubMed  Google Scholar 

  22. Chae EJ, Song JW, Seo JB et al (2008) Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology 249:671–681

    Article  PubMed  Google Scholar 

  23. Ohno Y, Koyama H, Matsumoto K et al (2011) Differentiation of malignant and benign pulmonary nodules with quantitative first-pass 320-detector row perfusion CT versus FDG PET/CT. Radiology 258:599–609

    Article  PubMed  Google Scholar 

  24. Schmid-Bindert G, Henzler T, Chu TQ et al (2012) Functional imaging of lung cancer using dual energy CT: how does iodine related attenuation correlate with standardized uptake value of 18FDG-PET-CT? Eur Radiol 22:93–103

    Article  PubMed  CAS  Google Scholar 

  25. Goo HW (2011) Regional and whole-body imaging in pediatric oncology. Pediatr Radiol 41(Suppl 1):S186–S194

    Article  PubMed  Google Scholar 

  26. Goo HW, Yang DH, Park IS et al (2007) Time-resolved three-dimensional contrast-enhanced magnetic resonance angiography in patients who have undergone a Fontan operation or bidirectional cavopulmonary connection: initial experience. J Magn Reson Imaging 25:727–736

    Article  PubMed  Google Scholar 

  27. Henzler T, Schmid-Bindert G, Schoenberg S et al (2010) Diffusion and perfusion MRI of the lung and mediastinum. Eur J Radiol 76:329–336

    Article  PubMed  Google Scholar 

  28. Kauczor H, Ley-Zaporozhan J, Ley S (2009) Imaging of pulmonary pathologies: focus on magnetic resonance imaging. Proc Am Thorac Soc 6:458–463

    Article  PubMed  Google Scholar 

  29. Bauman G, Puderbach M, Deimling M et al (2009) Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of Fourier decomposition in proton MRI. Magn Reson Med 62:656–664

    Article  PubMed  Google Scholar 

  30. Bauman G, Lützen U, Ullrich M et al (2011) Pulmonary functional imaging: qualitative comparison of Fourier decomposition MR imaging with SPECT/CT in porcine lung. Radiology 260:551–559

    Article  PubMed  Google Scholar 

  31. Zou Y, Zhang M, Wang Q et al (2008) Quantitative investigation of solitary pulmonary nodules: dynamic contrast-enhanced MRI and histopathologic analysis. AJR 191:252–259

    Article  PubMed  Google Scholar 

  32. Suga K, Tsukuda T, Awaya H et al (1999) Impaired respiratory mechanics in pulmonary emphysema: evaluation with dynamic breathing MRI. J Magn Reson Imaging 10:510–520

    Article  PubMed  CAS  Google Scholar 

  33. Tokuda J, Schmitt M, Sun Y et al (2009) Lung motion and volume measurement by dynamic 3D MRI using a 128-channel receiver coil. Acad Radiol 16:22–27

    Article  PubMed  Google Scholar 

  34. Mariappan YK, Glaser KJ, Hubmayr RD et al (2011) MR elastography of human lung parenchyma: technical development, theoretical modeling and in vivo validation. J Magn Reson Imaging 33:1351–1361

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Woo Goo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goo, H.W. Advanced functional thoracic imaging in children: from basic concepts to clinical applications. Pediatr Radiol 43, 262–268 (2013). https://doi.org/10.1007/s00247-012-2466-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-012-2466-3

Keywords

Navigation