Skip to main content

Advertisement

Log in

Right Heart Function of Fetuses and Infants with Large Ventricular Septal Defect: A Longitudinal Case–Control Study

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

The objective of this study was to detect the effect of a large ventricular septal defect (VSD) on right ventricular function before and after birth. All consecutive children with large VSD who were born in our hospital between January 2013–February 2016 and followed up throughout early infancy, and who lacked malformations or chromosomal abnormalities, were identified by a retrospective review of the medical records and included in this retrospective longitudinal case–control study (n = 30). Thirty normal control cases with an equivalent gestational age and gender served as controls. Tricuspid annular plane systolic excursion (TAPSE), right ventricle (RV) Tei index, and tricuspid E/E m were measured in the fetal, neonatal (day 1–28), and infant (day 29–70) periods. In all periods, the VSD and control groups did not differ in TAPSE values, but VSD associated with higher Tei indices and tricuspid E/E m values (in the fetal period: VSD group RV Tei was 0.48 ± 0.12 and E/E m was 11.84 ± 1.53, control group RV Tei was 0.42 ± 0.16 and E/E m was 10.16 ± 1.61; in neonatal period: VSD group RV Tei was 0.41 ± 0.17 and E/E m was 12.21 ± 1.59, control group RV Tei was 0.30 ± 0.13 and E/E m was 7.20 ± 1.28; in the infant period: VSD group RV Tei was 0.39 ± 0.09 and E/E m was 11.89 ± 2.80, control group RV Tei was 0.28 ± 0.12 and E/E m was 5.26 ± 1.90, all p < 0.05). In the fetal and neonatal periods, TAPSE correlated negatively with Tei index and tricuspid E/E m in both groups. However, in the infant period, only the control group exhibited correlations between TAPSE and Tei index or tricuspid E/E m. Tei index correlated positively with tricuspid E/E m in both groups in all three periods. The VSD group had smaller correlation coefficients than the control group. Large VSD may already start to impair RV diastolic and global function before birth. This impairment continued and increased after birth. These changes did not associate with obvious RV longitudinal systolic function impairment. Large VSD mainly affected RV function by decreasing diastolic function and myocardial performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dastgiri S, Stone DH, Le-Ha C et al (2002) Prevalence and secular trend of congenital anomalies in Glasgow, UK. Arch Dis Child 86(4):257–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tennant PW, Pearce MS, Bythell M et al (2010) 20-year survival of children born with congenital anomalies: a population-based study. Lancet 375(9715):649–656

    Article  PubMed  Google Scholar 

  3. Bernier PL, Stefanescu A, Samoukovic G et al (2010) The challenge of congenital heart disease worldwide: epidemiologic and demographic facts. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 13(1):26–34

    Article  PubMed  Google Scholar 

  4. Jaroslav F, Marc R, Victor T (2009) Congenital heart disease surgery, 2nd edn (trans: Ma WG, Zhang HJ, Zhu XD). People’s Medical Publishing House, Beijing, pp 329–330

  5. Sun K (2009) Infant cardiology. Beijing Science and Technology Press, Beijing, pp 96–100

    Google Scholar 

  6. Zhou L, Tong JY, Zhang Q et al (2015) Significance of Tei index and ductus venosus in assessment of right ventricular function of fetal with congenital heart disease. J Xinxiang Med Univ 32(8):752–755

    Google Scholar 

  7. Colvin EV (1998) Cardiac embryology. In: Garson A Jr, Bricker JT, Fisher DJ et al (eds) The science and practice of pediatric cardiology, 2nd edn. Williams & Wilkins, Baltimore, pp 91–126

    Google Scholar 

  8. Fineman JR, Soifer SJ (1998) The fetal and neonatal circulations. In: Anthony CC, Frank LH, Gil W et al (eds) Pediatric cardiac intensive care. Williams & Wilkins, Philadelphis, pp 17–24

    Google Scholar 

  9. Strafford MA (2006) Cardiovasculaer physiology in infants and children. In: Motoyama EK, Davis PJ (eds) Smith’s Anesthesia for infants and children, 7th edn. Mosby Elsevier, Philadelphis, pp 70–108

    Chapter  Google Scholar 

  10. Kind T, Mauritz GJ, Marcus JT et al (2010) Right ventricular ejection fraction is better reflected by transverse rather than longitudinal wall motion in pulmonary hypertension. J Cardiovasc Magn Reson 12:35

    Article  PubMed  PubMed Central  Google Scholar 

  11. James AT, Corcoran JD, Jain A et al (2014) Assessment of myocardial performance in preterm infants less than 29 weeks gestation during the transitional period. Early Hum Dev 90(12):829–835

    Article  PubMed  Google Scholar 

  12. Shu XH (2004) Echocardiography new technique for clinical ultrasound. Fudan University Press, Shanghai, p 153

    Google Scholar 

  13. Guo XF, Zhao BW, Li YL (2015) Z-score analysis of mitral annular plane systolic excursion in normal fetuses with fetal echocardiography. Chin J Ultrasound Med 11:1010–1012

    Google Scholar 

  14. Marwick TH (2003) Clinical applications of tissue doppler imaging: a promise fulfilled. Heart 89(12):1377–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Witte KK, Nikitin NP, De Silva R et al (2004) Exercise capacity and cardiac function assessed by tissue doppler imaging in chronic heart failure. Heart 90(10):1144–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bruch C, Stypmann J, Gradaus R et al (2005) Impact of stroke volume on mitral annular velocities derived from tissue doppler imaging. Heart 91(2):243–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marwick TH (2003) Clinical applications of tissue doppler imaging: a promise fulfilled. Heart 89(12):1377–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bruch C, Stypmann J, Gradaus R et al (2005) Impact of stroke volume on mitral annular velocities derived from tissue doppler imaging. Heart 91(2):243–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Letti Muller AL, Barrios Pde M, Kliemann LM et al (2010) Tei index to assess fetal cardiac performance in fetuses at risk for fetal inflammatory response syndrome. Ultrasound Obstet Gynecol 36(1):26–31

    Article  CAS  PubMed  Google Scholar 

  20. St John Sutton M, Wiegers SE (2000) The Tei index-a role in the diagnosis of heart failure? Eur Heart J 21(22):1822–1824

    Article  CAS  PubMed  Google Scholar 

  21. Sharp AS, Tapp RJ, Thom SA et al (2010) Tissue doppler e/e′ ratio is a powerful predictor of primary cardiac events in a hypertensive population: an ascot substudy. Eur Heart J 31(6):747–752

    Article  PubMed  Google Scholar 

  22. Park JH, Marwick TH (2011) Use and limitations of e/e′ to assess left ventricular filling pressure by echocardiography. J Cardiovasc Ultrasound 19(4):169–173

    Article  PubMed  PubMed Central  Google Scholar 

  23. Xia B (2001) Ultrasound diagnosis of children. People’s Medical Publishing House, Beijing, p 127

    Google Scholar 

  24. Jaroslav F, Marc R, Victor T (2009) Congenital heart disease surgery, 2nd edn (trans: Ma WG, Zhang HJ, Zhu XD). People’s Medical Publishing House, Beijing, pp 341–345

  25. Steinhorn Robin H (2010) Neonatal pulmonary hypertension. Pediatr Crit Care Med 11(2):79–84

    Article  Google Scholar 

  26. Rimensberger PC, Spahr Schopfer I, Berner M et al (2001) Inhaled nitric oxide versus aerosolized iloprost in secondary pulmonary hypertension in children with congenital heart disease: vasodilator capacity and cellular mechanisms. Circulation 103(4):544–548

    Article  CAS  PubMed  Google Scholar 

  27. Mishra M, Swaminathan M, Malhotra R et al (1998) Evaluation of right ventricular function during CABG: transesophageal echocardiographic assessment of hepatic venous flow versus conventional right ventricular performance indices. Echocardiography 15(1):51–58

    Article  PubMed  Google Scholar 

  28. Miller TA, Puchalski MD, Weng C et al (2012) Regional and global myocardial deformation of the fetal right ventricle in hypoplastic left heart syndrome. Prenat Diagn 32(10):949–953

    Article  PubMed  Google Scholar 

  29. Messing B, Gilboa Y, Lipschuetz M et al (2013) Fetal tricuspid annular plane systolic excursion (f-TAPSE): evaluation of fetal right heart systolic function with conventional M-mode ultrasound and spatiotemporal image correlation (STIC) M-mode. Ultrasound Obstet Gynecol 42(2):182–188

    Article  CAS  PubMed  Google Scholar 

  30. Teshima K, Asano K, Iwanaga K et al (2007) Evaluation of left ventricular Tei index (index of myocardial performance) in healthy dogs and dogs with mitral regurgitation. J Vet Med Sci 69(2):117–123

    Article  PubMed  Google Scholar 

  31. Ghawi H, Gendi S, Mallula K et al (2013) Fetal left and right ventricle myocardial performance index: defining normal values for the second and third trimesters—single tertiary center experience. Pediatr Cardiol 34(8):1808–1815

    Article  PubMed  Google Scholar 

  32. Bui YK, Kipps AK, Brook MM et al (2013) Tissue Doppler is more sensitive and reproducible than spectral pulsed-wave Doppler for fetal right ventricle myocardial performance index determination in normal and diabetic pregnancies. J Am Soc Echocardiogr 26(5):507–514

    Article  PubMed  Google Scholar 

  33. Sun ZD, Xia YS (2010) Quantitative evaluation of fetuses right ventricle function in pre-eclampsiaby using Tei index and related parameters. Chin J Ultrasound Med 26(5):463–466

    Google Scholar 

  34. Lindqvist P, Calcutteea A, Henein M (2008) Echocardiography in the assessment of right heart function. Eur J Echocardiogr 9(2):225–234

    PubMed  Google Scholar 

  35. Thijssen JM, de Korte CL (2014) Cardiological ultrasound imaging. Curr Pharm 20(39):6150–6161

    Article  CAS  Google Scholar 

  36. Pan M, Zhao BW, Yang Y et al (2010) Estimation of the normal fetal diastolic function during mid and late gestation using E/E m. Chin J Ultrasound Med 26(3):261–264

    Google Scholar 

  37. Balli S, Pac FA, Ece İ et al (2014) Assessment of cardiac functions in fetuses of gestational diabetic mothers. Pediatr Cardiol 35(1):30–37

    Article  PubMed  Google Scholar 

  38. Axt-Fliedner R, Graupner O, Kawecki A et al (2015) Evaluation of right ventricular function in fetuses with hypoplastic left heart syndrome using tissue Doppler techniques. Ultrasound Obstet Gynecol 45(6):670–677

    Article  CAS  PubMed  Google Scholar 

  39. Zhou TF, Dong LQ, Zzhang M et al (2003) The changes of anginotensin II receptor expression in cardiomyocytes of Ventricles in pigs with experimental ventricular septal defect. J Sichuan Univ (Med Sci Edition) 34(3):417–420

    CAS  Google Scholar 

  40. Sun K (2009) Infant cardiology. Beijing science and Technology Press, Beijing, pp 96–100

    Google Scholar 

  41. Horiuchi M, Akishita M, Dzau VJ (1999) Recent progress in angintension II type 2 receptor research in the cardiovascular system. Hypertension 33(5):613–621

    Article  CAS  PubMed  Google Scholar 

  42. Altin Hakan, Karaarslan Sevim, Karatas Zehra et al (2012) Evaluation of cardiac functions in term small for gestational age newborns with mild growth retardation: a serial conventional and tissue Doppler imaging echocardiographic study. Early Hum Dev 88(9):757–764

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanmin Liu.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Xie, L., Dai, L. et al. Right Heart Function of Fetuses and Infants with Large Ventricular Septal Defect: A Longitudinal Case–Control Study. Pediatr Cardiol 37, 1488–1497 (2016). https://doi.org/10.1007/s00246-016-1462-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-016-1462-z

Keywords

Navigation