Skip to main content

Advertisement

Log in

Three-Dimensional Rotational Angiography in the Pediatric Cath Lab: Optimizing Aortic Interventions

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate usability and accuracy of three-dimensional rotational angiography (3DRA) during interventions of the aorta in congenital heart disease (CHD). 3DRA is an accurate, encompassing and fast imaging technique in the cath lab. However, there is only few published data about its use during interventions in CHD. Between January 2010 and January 2014, 3DRA was performed in 77 patients with aortic issues: in 65 % cases, an intervention was performed, of which 72 % had aortic isthmus stenosis. Data were obtained retrospectively. The accuracy of 3DRA was evaluated on the basis of comparative measurements (n = 60) of the aortic diameter between 3DRA and conventional biplane angiography. Measurements presented a high accuracy with an average deviation of 3.89 % [±3 %] and a significant correlation of r = 0.99 after Pearson (p < 0.0001). Clinical benefit was assessed using a five-point Likert scale and could be shown in 98 %. Comparison with a control group showed a reduced fluoroscopy time from 10.2 to 8.30 min (median, p < 0.01) and decreased radiation dose of 0.18 compared to 0.56 Gy cm2/kg (median, p < 0.02). The use of 3DRA in patients with aortic anomalies has advantages in comparison with conventional angiography. It improves diagnostic accuracy, and 3D guidance enables a faster and simplified intervention with enhanced patients’ safety and the potential to reduce radiation dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Andreassi MG, Picano E (2014) Reduction of radiation to children: our responsibility to change. Circulation. doi:10.1161/CIRCULATIONAHA.114.010699

    Google Scholar 

  2. Bakker NH, den Heeten GJ, van Rooij WJ, Grimbergen CA (2003) Image guidance for neurovascular intervention: proposed setup for a 3D-roadmap system. Minim Invasive Ther Allied Technol 12(6):304–309. doi:10.1080/13645700310017877

    Article  PubMed  Google Scholar 

  3. Berman DP, Khan DM, Gutierrez Y, Zahn EM (2012) The use of three-dimensional rotational angiography to assess the pulmonary circulation following cavo-pulmonary connection in patients with single ventricle. Catheter Cardiovasc Interv 80(6):922–930. doi:10.1002/ccd.23461

    Article  PubMed  Google Scholar 

  4. Ellis AR, Mulvihill D, Bradley SM, Hlavacek AM (2010) Utility of computed tomographic angiography in the pre-operative planning for initial and repeat congenital cardiovascular surgery. Cardiol Young 20(3):262–268. doi:10.1017/S1047951109990904

    Article  PubMed  Google Scholar 

  5. Fagan T, Kay J, Carroll J, Neubauer A (2012) 3-D guidance of complex pulmonary artery stent placement using reconstructed rotational angiography with live overlay. Catheter Cardiovasc Interv 79(3):414–421. doi:10.1002/ccd.23229

    Article  PubMed  Google Scholar 

  6. Fahrig R, Fox AJ, Lownie S, Holdsworth DW (1997) Use of a C-arm system to generate true three-dimensional computed rotational angiograms: preliminary in vitro and in vivo results. Am J Neuroradiol (AJNR) 18(8):1507–1514

    CAS  Google Scholar 

  7. Feltes TF, Bacha E, Beekman RH III, Cheatham JP, Feinstein JA, Gomes AS, Hijazi ZM, Ing FF, de Moor M, Morrow WR, Mullins CE, Taubert KA, Zahn EM (2011) Indications for cardiac catheterization and intervention in pediatric cardiac disease: a scientific statement from the American Heart Association. Circulation 123(22):2607–2652. doi:10.1161/CIR.0b013e31821b1f10

    Article  PubMed  Google Scholar 

  8. Forbes TJ, Kim DW, Du W, Turner DR, Holzer R, Amin Z, Hijazi Z, Ghasemi A, Rome JJ, Nykanen D, Zahn E, Cowley C, Hoyer M, Waight D, Gruenstein D, Javois A, Foerster S, Kreutzer J, Sullivan N, Khan A, Owada C, Hagler D, Lim S, Canter J, Zellers T (2011) Comparison of surgical, stent, and balloon angioplasty treatment of native coarctation of the aorta: an observational study by the CCISC (Congenital Cardiovascular Interventional Study Consortium). J Am Coll Cardiol 58(25):2664–2674. doi:10.1016/j.jacc.2011.08.053

    Article  PubMed  Google Scholar 

  9. Ghelani SJ, Glatz AC, David S, Leahy R, Hirsch R, Armsby LB, Trucco SM, Holzer RJ, Bergersen L (2014) Radiation dose benchmarks during cardiac catheterization for congenital heart disease in the United States. JACC Cardiovasc Interv 7(9):1060–1069. doi:10.1016/j.jcin.2014.04.013

    Article  PubMed  Google Scholar 

  10. Glatz AC, Zhu X, Gillespie MJ, Hanna BD, Rome JJ (2010) Use of angiographic CT imaging in the cardiac catheterization laboratory for congenital heart disease. JACC Cardiovasc Imaging 3(11):1149–1157. doi:10.1016/j.jcmg.2010.09.011

    Article  PubMed  Google Scholar 

  11. Glockler M, Koch A, Greim V, Shabaiek A, Ruffer A, Cesnjevar R, Achenbach S, Dittrich S (2011) The value of flat-detector computed tomography during catheterisation of congenital heart disease. Eur Radiol 21(12):2511–2520. doi:10.1007/s00330-011-2214-3

    Article  PubMed  Google Scholar 

  12. Glockler M, Halbfass J, Koch A, Achenbach S, Dittrich S (2013) Multimodality 3D-roadmap for cardiovascular interventions in congenital heart disease—a single-center, retrospective analysis of 78 cases. Catheter Cardiovasc Interv 82(3):436–442. doi:10.1002/ccd.24646

    Article  PubMed  Google Scholar 

  13. Glockler M, Halbfass J, Koch A, Dittrich S, Achenbach S, Ruffer A, Ihlenburg S, Cesnjevar R, May M, Uder M, Rompel O (2014) Preoperative assessment of the aortic arch in children younger than 1 year with congenital heart disease: utility of low-dose high-pitch dual-source computed tomography. A single-centre, retrospective analysis of 62 cases. Eur J Cardiothorac Surg 45(6):1060–1065. doi:10.1093/ejcts/ezt537

    Article  PubMed  Google Scholar 

  14. Godart F (2011) Intravascular stenting for the treatment of coarctation of the aorta in adolescent and adult patients. Arch Cardiovasc Dis 104(12):627–635. doi:10.1016/j.acvd.2011.08.005

    Article  PubMed  Google Scholar 

  15. Godart F, Labrot G, Devos P, McFadden E, Rey C, Beregi JP (2002) Coarctation of the aorta: comparison of aortic dimensions between conventional MR imaging, 3D MR angiography, and conventional angiography. Eur Radiol 12(8):2034–2039. doi:10.1007/s00330-001-1260-7

    Article  PubMed  Google Scholar 

  16. Gupta R, Cheung AC, Bartling SH, Lisauskas J, Grasruck M, Leidecker C, Schmidt B, Flohr T, Brady TJ (2008) Flat-panel volume CT: fundamental principles, technology, and applications. Radiographics 28(7):2009–2022. doi:10.1148/rg.287085004

    Article  PubMed  Google Scholar 

  17. Hetterich H, Redel T, Lauritsch G, Rohkohl C, Rieber J (2010) New X-ray imaging modalities and their integration with intravascular imaging and interventions. Int J Cardiovasc Imaging 26(7):797–808. doi:10.1007/s10554-009-9529-z

    Article  CAS  PubMed  Google Scholar 

  18. Kalender WA (2014) Dose in X-ray computed tomography. Phys Med Biol 59(3):R129–R150. doi:10.1088/0031-9155/59/3/R129

    Article  PubMed  Google Scholar 

  19. Kalender WA, Kyriakou Y (2007) Flat-detector computed tomography (FD-CT). Eur Radiol 17(11):2767–2779. doi:10.1007/s00330-007-0651-9

    Article  PubMed  Google Scholar 

  20. Krieger EV, Stout K (2010) The adult with repaired coarctation of the aorta. Heart 96(20):1676–1681. doi:10.1136/hrt.2010.195065

    Article  PubMed  Google Scholar 

  21. Krishnaswamy A, Tuzcu EM, Kapadia SR (2011) Three-dimensional computed tomography in the cardiac catheterization laboratory. Catheter Cardiovasc Interv 77(6):860–865. doi:10.1002/ccd.22740

    Article  PubMed  Google Scholar 

  22. Likert R (1932) A technique for the measurement of attitudes. Arch Psychol 22(140):1–55

    Google Scholar 

  23. Moesler J, Dittrich S, Rompel O, Glockler M (2013) Flat detector computed tomography in diagnostic and interventional pediatric cardiology. Rofo 185(5):446–453. doi:10.1055/s-0032-1330515

    Article  CAS  PubMed  Google Scholar 

  24. Raval AN, Lederman RJ (2005) Real-time magnetic resonance imaging to guide pediatric endovascular procedures. Pediatr Cardiol 26(3):251–259. doi:10.1007/s00246-005-1008-2

    Article  CAS  PubMed  Google Scholar 

  25. Reinke G, Halbfaß J, Banckwitz R, Köhler C, Achenbach S, Rompel O, Dittrich S, Glöckler M (2013) Three-dimensional rotational angiography in congenital heart disease: Estimation of radiation exposure. Open J Radiol 3(3):124–129. doi:10.4236/ojrad.2013.33020

    Article  Google Scholar 

  26. Rickers C, Seethamraju RT, Jerosch-Herold M, Wilke NM (2003) Magnetic resonance imaging guided cardiovascular interventions in congenital heart diseases. J Interv Cardiol 16(2):143–147

    Article  PubMed  Google Scholar 

  27. Saeed M, Hetts SW, English J, Wilson M (2012) MR fluoroscopy in vascular and cardiac interventions (review). Int J Cardiovasc Imaging 28(1):117–137. doi:10.1007/s10554-010-9774-1

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schoenhagen P, Numburi U, Halliburton SS, Aulbach P, von Roden M, Desai MY, Rodriguez LL, Kapadia SR, Tuzcu EM, Lytle BW (2010) Three-dimensional imaging in the context of minimally invasive and transcatheter cardiovascular interventions using multi-detector computed tomography: from pre-operative planning to intra-operative guidance. Eur Heart J 31(22):2727–2740. doi:10.1093/eurheartj/ehq302

    Article  PubMed  Google Scholar 

  29. Soderman M, Babic D, Homan R, Andersson T (2005) 3D roadmap in neuroangiography: technique and clinical interest. Neuroradiology 47(10):735–740. doi:10.1007/s00234-005-1417-1

    Article  PubMed  Google Scholar 

  30. Wall B, Hart D, Mol H, Lecluyse A, Aroua A, Trueb P, Griebel J, Nekolla E, Gron P, Waltenburg H, Beauvais-March H, Aubert B, Scanff P, Pirard P, Sinno-Tellier S, Shannoun F, Brugmans M, Meeuwsen E, Stoop P, Olerud H, Borretzen I, Leitz W (2008) Radiation protection no. 154. European guidance on estimating population doses from medical X-ray procedures. European Commission. Prepared by Health Protection Agency, Centre for Radiation, Chemical and Environmental Hazards Radiation Protection Division Chilton, Didcot, Oxfordshire. http://ddmed.eu/_media/background_of_ddm1:rp154.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Stenger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stenger, A., Dittrich, S. & Glöckler, M. Three-Dimensional Rotational Angiography in the Pediatric Cath Lab: Optimizing Aortic Interventions. Pediatr Cardiol 37, 528–536 (2016). https://doi.org/10.1007/s00246-015-1310-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-015-1310-6

Keywords

Navigation