Skip to main content

Advertisement

Log in

A Novel TBX1 Loss-of-Function Mutation Associated with Congenital Heart Disease

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Congenital heart disease (CHD) is the most prevalent type of birth defect in humans and is the leading non-infectious cause of infant death worldwide. There is a growing body of evidence demonstrating that genetic defects play an important role in the pathogenesis of CHD. However, CHD is a genetically heterogeneous disease and the genetic basis underpinning CHD in an overwhelming majority of patients remains unclear. In this study, the coding exons and splice junction sites of the TBX1 gene, which encodes a T-box homeodomain transcription factor essential for proper cardiovascular morphogenesis, were sequenced in 230 unrelated children with CHD. The available family members of the index patient carrying an identified mutation and 200 unrelated ethnically matched healthy individuals used as controls were subsequently genotyped for TBX1. The functional effect of the TBX1 mutation was predicted by online program MutationTaster and characterized by using a dual-luciferase reporter assay system. As a result, a novel heterozygous TBX1 mutation, p.Q277X, was identified in an index patient with double outlet right ventricle (DORV) and ventricular septal defect (VSD). Genetic analysis of the proband’s available relatives showed that the mutation co-segregated with CHD transmitted in an autosomal dominant pattern with complete penetrance. The nonsense mutation, which was absent in 400 control chromosomes, altered the amino acid that was completely conserved evolutionarily across species and was predicted to be disease-causing by MutationTaster. Biochemical analysis revealed that Q277X-mutant TBX1 lost transcriptional activating function when compared with its wild-type counterpart. This study firstly associates TBX1 loss-of-function mutation with enhanced susceptibility to DORV and VSD in humans, which provides novel insight into the molecular mechanism underlying CHD and suggests potential implications for the development of new preventive and therapeutic strategies for CHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agha H, El Heinady F, El Falaky M, Sobih A (2014) Pulmonary functions before and after pediatric cardiac surgery. Pediatr Cardiol 35:542–549

    Article  PubMed  Google Scholar 

  2. Al Turki S, Manickaraj AK, Mercer CL, Gerety SS, Hitz MP, Lindsay S, D’Alessandro LC, Swaminathan GJ, Bentham J, Arndt AK, Low J, Breckpot J, Gewillig M, Thienpont B, Abdul-Khaliq H, Harnack C, Hoff K, Kramer HH, Schubert S, Siebert R, Toka O, Cosgrove C, Watkins H, Lucassen AM, O’Kelly IM, Salmon AP, Bu’lock FA, Granados-Riveron J, Setchfield K, Thornborough C, Brook JD, Mulder B, Klaassen S, Bhattacharya S, Devriendt K, Fitzpatrick DF, UK10 K Consortium, Wilson DI, Mital S, Hurles ME (2014) Rare variants in NR2F2 cause congenital heart defects in humans. Am J Hum Genet 94:574–585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Alonso-Gonzalez R, Borgia F, Diller GP, Inuzuka R, Kempny A, Martinez-Naharro A, Tutarel O, Marino P, Wustmann K, Charalambides M, Silva M, Swan L, Dimopoulos K, Gatzoulis MA (2013) Abnormal lung function in adults with congenital heart disease: prevalence, relation to cardiac anatomy, and association with survival. Circulation 127:882–890

    Article  PubMed  Google Scholar 

  4. Andersen TA, Troelsen Kde L, Larsen LA (2014) Of mice and men: molecular genetics of congenital heart disease. Cell Mol Life Sci 71:1327–1352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Babaoğlu K, Altun G, Binnetoğlu K, Dönmez M, Kayabey Ö, Anık Y (2013) Crossed pulmonary arteries: a report on 20 cases with an emphasis on the clinical features and the genetic and cardiac abnormalities. Pediatr Cardiol 34:1785–1790

    Article  PubMed  Google Scholar 

  6. Bang JS, Jo S, Kim GB, Kwon BS, Bae EJ, Noh CI, Choi JY (2013) The mental health and quality of life of adult patients with congenital heart disease. Int J Cardiol 170:49–53

    Article  PubMed  Google Scholar 

  7. Brown CB, Wenning JM, Lu MM, Epstein DJ, Meyers EN, Epstein JA (2004) Cre-mediated excision of Fgf8 in the Tbx1 expression domain reveals a critical role for Fgf8 in cardiovascular development in the mouse. Dev Biol 267:190–202

    Article  CAS  PubMed  Google Scholar 

  8. Cevik A, Kula S, Olgunturk R, Tunaoglu FS, Oguz AD, Saylan B, Cilsal E, Sanli C (2013) Assessment of pulmonary arterial hypertension and vascular resistance by measurements of the pulmonary arterial flow velocity curve in the absence of a measurable tricuspid regurgitant velocity in childhood congenital heart disease. Pediatr Cardiol 34:646–655

    Article  PubMed  Google Scholar 

  9. Chang SW, Mislankar M, Misra C, Huang N, Dajusta DG, Harrison SM, McBride KL, Baker LA, Garg V (2013) Genetic abnormalities in FOXP1 are associated with congenital heart defects. Hum Mutat 34:1226–1230

    Article  CAS  PubMed  Google Scholar 

  10. Chieffo C, Garvey N, Gong W, Roe B, Zhang G, Silver L, Emanuel BS, Budarf ML (1997) Isolation and characterization of a gene from the DiGeorge chromosomal region homologous to the mouse Tbx1 gene. Genomics 43:267–277

    Article  CAS  PubMed  Google Scholar 

  11. Costa MW, Guo G, Wolstein O, Vale M, Castro ML, Wang L, Otway R, Riek P, Cochrane N, Furtado M, Semsarian C, Weintraub RG, Yeoh T, Hayward C, Keogh A, Macdonald P, Feneley M, Graham RM, Seidman JG, Seidman CE, Rosenthal N, Fatkin D, Harvey RP (2013) Functional characterization of a novel mutation in NKX2-5 associated with congenital heart disease and adult-onset cardiomyopathy. Circ Cardiovasc Genet 6:238–247

    Article  CAS  PubMed  Google Scholar 

  12. Cowan J, Tariq M, Ware SM (2014) Genetic and functional analyses of ZIC3 variants in congenital heart disease. Hum Mutat 35:66–75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Cresci M, Foffa I, Ait-Ali L, Pulignani S, Kemeny A, Gianicolo EA, Andreassi MG (2013) Maternal environmental exposure, infant GSTP1 polymorphism, and risk of isolated congenital heart disease. Pediatr Cardiol 34:281–285

    Article  PubMed  Google Scholar 

  14. Demir M (2013) The relationship between atrial septal aneurysm and autonomic dysfunction. Exp Clin Cardiol 18:104–106

    PubMed Central  PubMed  Google Scholar 

  15. Dimitropoulos A, McQuillen PS, Sethi V, Moosa A, Chau V, Xu D, Brant R, Azakie A, Campbell A, Barkovich AJ, Poskitt KJ, Miller SP (2013) Brain injury and development in newborns with critical congenital heart disease. Neurology 81:241–248

    Article  PubMed Central  PubMed  Google Scholar 

  16. Dimopoulos K, Wort SJ, Gatzoulis MA (2014) Pulmonary hypertension related to congenital heart disease: a call for action. Eur Heart J 35:691–700

    Article  PubMed  Google Scholar 

  17. Egbe A, Uppu S, Stroustrup A, Lee S, Ho D, Srivastava S (2014) Incidences and sociodemographics of specific congenital heart diseases in the United States of America: an evaluation of hospital discharge diagnoses. Pediatr Cardiol 35:975–982

    Article  PubMed  Google Scholar 

  18. Fahed AC, Gelb BD, Seidman JG, Seidman CE (2013) Genetics of congenital heart disease: the glass half empty. Circ Res 112:707–720

    Article  CAS  PubMed  Google Scholar 

  19. Garcia Guerra G, Joffe AR, Robertson CM, Atallah J, Alton G, Sauve RS, Dinu IA, Ross DB, Rebeyka IM, Western Canadian Complex Pediatric Therapies Follow-up Group (2014) Health-related quality of life experienced by children with chromosomal abnormalities and congenital heart defects. Pediatr Cardiol 35:536–541

    Article  PubMed  Google Scholar 

  20. Gatzoulis MA, Beghetti M, Landzberg MJ, Galiè N (2014) Pulmonary arterial hypertension associated with congenital heart disease: recent advances and future directions. Int J Cardiol 177:340–347

    Article  PubMed  Google Scholar 

  21. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2014) Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 129:e28–e292

    Article  PubMed  Google Scholar 

  22. Goldmuntz E, Clark BJ, Mitchell LE, Jawad AF, Cuneo BF, Reed L, McDonald-McGinn D, Chien P, Feuer J, Zackai EH, Emanuel BS, Driscoll DA (1998) Frequency of 22q11 deletions in patients with conotruncal defects. J Am Coll Cardiol 32:492–498

    Article  CAS  PubMed  Google Scholar 

  23. Gong W, Gottlieb S, Collins J, Blescia A, Dietz H, Goldmuntz E, McDonald-McGinn DM, Zackai EH, Emanuel BS, Driscoll DA, Budarf ML (2001) Mutation analysis of TBX1 in non-deleted patients with features of DGS/VCFS or isolated cardiovascular defects. J Med Genet 38:e45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Gorini F, Chiappa E, Gargani L, Picano E (2014) Potential effects of environmental chemical contamination in congenital heart disease. Pediatr Cardiol 35:559–568

    Article  PubMed  Google Scholar 

  25. Greulich F, Rudat C, Kispert A (2011) Mechanisms of T-box gene function in the developing heart. Cardiovasc Res 91:212–222

    Article  CAS  PubMed  Google Scholar 

  26. Griffin HR, Töpf A, Glen E, Zweier C, Stuart AG, Parsons J, Peart I, Deanfield J, O’Sullivan J, Rauch A, Scambler P, Burn J, Cordell HJ, Keavney B, Goodship JA (2010) Systematic survey of variants in TBX1 in non-syndromic tetralogy of Fallot identifies a novel 57 base pair deletion that reduces transcriptional activity but finds no evidence for association with common variants. Heart 96:1651–1655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Huang W, Meng H, Qiao Y, Pang S, Chen D, Yan B (2013) Two novel and functional DNA sequence variants within an upstream enhancer of the human NKX2-5 gene in ventricular septal defects. Gene 524:152–155

    Article  CAS  PubMed  Google Scholar 

  28. Huang RT, Xue S, Xu YJ, Zhou M, Yang YQ (2014) Somatic GATA5 mutations in sporadic tetralogy of Fallot. Int J Mol Med 33:1227–1235

    CAS  PubMed  Google Scholar 

  29. Idorn L, Jensen AS, Juul K, Reimers JI, Johansson PI, Sørensen KE, Ostrowski SR, Søndergaard L (2013) Thromboembolic complications in Fontan patients: population-based prevalence and exploration of the etiology. Pediatr Cardiol 34:262–272

    Article  CAS  PubMed  Google Scholar 

  30. Jerome LA, Papaioannou VE (2001) DiGeorge syndrome phenotype in mice mutant for the T-box gene, TBX1. Nat Genet 27:286–291

    Article  CAS  PubMed  Google Scholar 

  31. Jiang JQ, Li RG, Wang J, Liu XY, Xu YJ, Fang WY, Chen XZ, Zhang W, Wang XZ, Yang YQ (2013) Prevalence and spectrum of GATA5 mutations associated with congenital heart disease. Int J Cardiol 165:570–573

    Article  PubMed  Google Scholar 

  32. Klitsie LM, Roest AA, Blom NA, ten Harkel AD (2014) Ventricular performance after surgery for a congenital heart defect as assessed using advanced echocardiography: from doppler flow to 3D echocardiography and speckle-tracking strain imaging. Pediatr Cardiol 35:3–15

    Article  PubMed  Google Scholar 

  33. Knöchelmann A, Geyer S, Grosser U (2014) Maternal understanding of infective endocarditis after hospitalization: assessing the knowledge of mothers of children with congenital heart disease and the practical implications. Pediatr Cardiol 35:223–231

    Article  PubMed  Google Scholar 

  34. Kröönström LA, Johansson L, Zetterström AK, Dellborg M, Eriksson P, Cider Å (2014) Muscle function in adults with congenital heart disease. Int J Cardiol 170:358–363

    Article  PubMed  Google Scholar 

  35. Lahm H, Deutsch MA, Dreßen M, Doppler S, Werner A, Hörer J, Cleuziou J, Schreiber C, Böhm J, Laugwitz KL, Lange R, Krane M (2013) Mutational analysis of the human MESP1 gene in patients with congenital heart disease reveals a highly variable sequence in exon 1. Eur J Med Genet 56:591–598

    Article  PubMed  Google Scholar 

  36. Laux D, Bertail C, Bajolle F, Houyel L, Boudjemline Y, Bonnet D (2014) Anomalous left coronary artery connected to the pulmonary artery associated with other cardiac defects: a difficult joint diagnosis. Pediatr Cardiol 35:1198–1205

    Article  PubMed  Google Scholar 

  37. Lee LJ, Lupo PJ (2013) Maternal smoking during pregnancy and the risk of congenital heart defects in offspring: a systematic review and metaanalysis. Pediatr Cardiol 34:398–407

    Article  PubMed  Google Scholar 

  38. Lindsay EA, Vitelli F, Su H, Morishima M, Huynh T, Pramparo T, Jurecic V, Ogunrinu G, Sutherland HF, Scambler PJ, Bradley A, Baldini A (2001) Tbx1 haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410:97–101

    Article  CAS  PubMed  Google Scholar 

  39. Mandal S, Tadros SS, Soni S, Madan S (2014) Single coronary artery anomaly: classification and evaluation using multidetector computed tomography and magnetic resonance angiography. Pediatr Cardiol 35:441–449

    Article  PubMed  Google Scholar 

  40. Martínez-Quintana E, Rodríguez-González F, Nieto-Lago V (2013) Subclinical hypothyroidism in grown-up congenital heart disease patients. Pediatr Cardiol 34:912–917

    Article  PubMed  Google Scholar 

  41. McCulley DJ, Black BL (2012) Transcription factor pathways and congenital heart disease. Curr Top Dev Biol 100:253–277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. McElhinney DB, Geiger E, Blinder J, Benson DW, Goldmuntz E (2003) NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardio 42:1650–1655

    Article  CAS  Google Scholar 

  43. Merscher S, Funke B, Epstein JA, Heyer J, Puech A, Lu MM, Xavier R, DemayMB Russell RG, Factor S, Tokooya K, Jore BS, Lopez M, Pandita RK, Lia M, Carrion D, Xu H, Schorle H, Kobler JB, Scambler P, Wynshaw-Boris A, Skoultchi AI, Morrow BE, Kucherlapati R (2001) TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104:619–629

    Article  CAS  PubMed  Google Scholar 

  44. Momma K (2010) Cardiovascular anomalies associated with chromosome 22q11.2 deletion syndrome. Am J Cardiol 105:1617–1624

    Article  CAS  PubMed  Google Scholar 

  45. Moutafi AC, Manis G, Dellos C, Tousoulis D, Davos CH (2014) Cardiac autonomic nervous activity in adults with coarctation of the aorta late after repair. Int J Cardiol 173:566–568

    Article  PubMed  Google Scholar 

  46. Mueller GC, Sarikouch S, Beerbaum P, Hager A, Dubowy KO, Peters B, Mir TS (2013) Health-related quality of life compared with cardiopulmonary exercise testing at the midterm follow-up visit after tetralogy of Fallot repair: a study of the German competence network for congenital heart defects. Pediatr Cardiol 34:1081–1087

    Article  PubMed  Google Scholar 

  47. Mulkey SB, Swearingen CJ, Melguizo MS, Schmitz ML, Ou X, Ramakrishnaiah RH, Glasier CM, Bradley Schaefer G, Bhutta AT (2013) Multi-tiered analysis of brain injury in neonates with congenital heart disease. Pediatr Cardiol 34:1772–1784

    Article  PubMed Central  PubMed  Google Scholar 

  48. Mulkey SB, Swearingen CJ, Melguizo MS, Reeves RN, Rowell JA, Gibson N, Holland G, Bhutta AT, Kaiser JR (2014) Academic proficiency in children after early congenital heart disease surgery. Pediatr Cardiol 35:344–352

    Article  PubMed Central  PubMed  Google Scholar 

  49. Müller J, Engelhardt A, Fratz S, Eicken A, Ewert P, Hager A (2014) Improved exercise performance and quality of life after percutaneous pulmonary valve implantation. Int J Cardiol 173:388–392

    Article  PubMed  Google Scholar 

  50. Nicholson P, Yepiskoposyan H, Metze S, Zamudio Orozco R, Kleinschmidt N, Mühlemann O (2010) Nonsense-mediated mRNA decay in human cells: mechanistic insights, functions beyond quality control and the double-life of NMD factors. Cell Mol Life Sci 67:677–700

    Article  CAS  PubMed  Google Scholar 

  51. O’Byrne ML, Mercer-Rosa L, Ingall E, McBride MG, Paridon S, Goldmuntz E (2013) Habitual exercise correlates with exercise performance in patients with conotruncal abnormalities. Pediatr Cardiol 34:853–860

    Article  PubMed  Google Scholar 

  52. Ogata T, Niihori T, Tanaka N, Kawai M, Nagashima T, Funayama R, Nakayama K, Nakashima S, Kato F, Fukami M, Aoki Y, Matsubara Y (2014) TBX1 mutation identified by exome sequencing in a Japanese family with 22q11.2 deletion syndrome-like craniofacial features and hypocalcemia. PLoS One 9:e91598

    Article  PubMed Central  PubMed  Google Scholar 

  53. Passarella G, Trifirò G, Gasparetto M, Moreolo GS, Milanesi O (2013) Disorders in glucidic metabolism and congenital heart diseases: detection and prevention. Pediatr Cardiol 34:931–937

    Article  CAS  PubMed  Google Scholar 

  54. Patel SS, Burns TL (2013) Nongenetic risk factors and congenital heart defects. Pediatr Cardiol 34:1535–1555

    Article  PubMed  Google Scholar 

  55. Perry JC (2012) Sudden cardiac death and malignant arrhythmias: the scope of the problem in adult congenital heart patients. Pediatr Cardiol 33:484–490

    Article  PubMed  Google Scholar 

  56. Pierpont ME, Basson CT, Benson DW Jr, Gelb BD, Giglia TM, Goldmuntz E, McGee G, Sable CA, Srivastava D, Webb CL, American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young (2007) Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 115:3015–3038

    Article  PubMed  Google Scholar 

  57. Priromprintr B, Rhodes J, Silka MJ, Batra AS (2014) Prevalence of arrhythmias during exercise stress testing in patients with congenital heart disease and severe right ventricular conduit dysfunction. Am J Cardiol 114:468–472

    Article  PubMed  Google Scholar 

  58. Qu XK, Qiu XB, Yuan F, Wang J, Zhao CM, Liu XY, Zhang XL, Li RG, Xu YJ, Hou XM, Fang WY, Liu X, Yang YQ (2014) A novel NKX2.5 loss-of-function mutation associated with congenital bicuspid aortic valve. Am J Cardiol 114:1891–1895

    Article  CAS  PubMed  Google Scholar 

  59. Rushani D, Kaufman JS, Ionescu-Ittu R, Mackie AS, Pilote L, Therrien J, Marelli AJ (2013) Infective endocarditis in children with congenital heart disease: cumulative incidence and predictors. Circulation 128:1412–1419

    Article  PubMed  Google Scholar 

  60. Sakata M, Hayabuchi Y, Inoue M, Onishi T, Kagami S (2013) Left atrial volume change throughout the cardiac cycle in children with congenital heart disease associated with increased pulmonary blood flow: evaluation using a novel left atrium-tracking method. Pediatr Cardiol 34:105–111

    Article  PubMed  Google Scholar 

  61. Sanchez-Castro M, Gordon CT, Petit F, Nord AS, Callier P, Andrieux J, Guérin P, Pichon O, David A, Abadie V, Bonnet D, Visel A, Pennacchio LA, Amiel J, Lyonnet S, Le Caignec C (2013) Congenital heart defects in patients with deletions upstream of SOX9. Hum Mutat 34:1628–1631

    Article  CAS  PubMed  Google Scholar 

  62. Schuck R, Abd El Rahman MY, Rentzsch A, Hui W, Weng Y, Alexi-Meskishvili V, Lange PE, Berger F, Abdul-Khaliq H (2014) Altered right ventricular function in the long-term follow-up evaluation of patients after delayed aortic reimplantation of the anomalous left coronary artery from the pulmonary artery. Pediatr Cardiol 35:530–535

    Article  PubMed  Google Scholar 

  63. Shi LM, Tao JW, Qiu XB, Wang J, Yuan F, Xu L, Liu H, Li RG, Xu YJ, Qian Wang Q, Zheng HZ, Li X, Wang XZ, Qu XK, Yang YQ (2014) GATA5 loss-of-function mutations associated with congenital bicuspid aortic valve. Int J Mol Med 33:1219–1226

    CAS  PubMed  Google Scholar 

  64. Sinha S, Abraham S, Gronostajski RM, Campbell CE (2000) Differential DNA binding and transcription modulation by three T-box proteins, T, TBX1 and TBX2. Gene 15:15–29

    Article  Google Scholar 

  65. Starikov R, Bohrer J, Goh W, Kuwahara M, Chien EK, Lopes V, Coustan D (2013) Hemoglobin A1c in pregestational diabetic gravidas and the risk of congenital heart disease in the fetus. Pediatr Cardiol 34:1716–1722

    Article  PubMed  Google Scholar 

  66. Tabib A, Khorgami MR, Meraji M, Omidi N, Mirmesdagh Y (2014) Accuracy of Doppler-derived indices in predicting pulmonary vascular resistance in children with pulmonary hypertension secondary to congenital heart disease with left-to-right shunting. Pediatr Cardiol 35:521–529

    Article  PubMed  Google Scholar 

  67. Tripathi A, Black GB, Park YM, Jerrell JM (2014) Factors associated with the occurrence and treatment of supraventricular tachycardia in a pediatric congenital heart disease cohort. Pediatr Cardiol 35:368–373

    Article  PubMed  Google Scholar 

  68. Tutarel O, Kempny A, Alonso-Gonzalez R, Jabbour R, Li W, Uebing A, Dimopoulos K, Swan L, Gatzoulis MA, Diller GP (2014) Congenital heart disease beyond the age of 60: emergence of a new population with high resource utilization, high morbidity, and high mortality. Eur Heart J 35:725–732

    Article  PubMed  Google Scholar 

  69. Uysal F, Bostan OM, Semizel E, Signak IS, Asut E, Cil E (2014) Congenital anomalies of coronary arteries in children: the evaluation of 22 patients. Pediatr Cardiol 35:778–784

    Article  PubMed  Google Scholar 

  70. Valente AM, Gauvreau K, Assenza GE, Babu-Narayan SV, Evans SP, Gatzoulis M, Groenink M, Inuzuka R, Kilner PJ, Koyak Z, Landzberg MJ, Mulder B, Powell AJ, Wald R, Geva T (2013) Rationale and design of an International Multicenter Registry of patients with repaired tetralogy of Fallot to define risk factors for late adverse outcomes: the INDICATOR cohort. Pediatr Cardiol 34:95–104

    Article  PubMed  Google Scholar 

  71. van der Bom T, Zomer AC, Zwinderman AH, Meijboom FJ, Bouma BJ, Mulder BJ (2011) The changing epidemiology of congenital heart disease. Nat Rev Cardiol 8:50–60

    Article  PubMed  Google Scholar 

  72. Verheugt CL, Uiterwaal CS, van der Velde ET, Meijboom FJ, Pieper PG, Sieswerda GT, Plokker HW, Grobbee DE, Mulder BJ (2010) The emerging burden of hospital admissions of adults with congenital heart disease. Heart 96:872–878

    Article  PubMed  Google Scholar 

  73. Wang J, Xin YF, Xu WJ, Liu ZM, Qiu XB, Qu XK, Xu L, Li X, Yang YQ (2013) Prevalence and spectrum of PITX2c mutations associated with congenital heart disease. DNA Cell Biol 32:708–716

    Article  PubMed Central  PubMed  Google Scholar 

  74. Wang C, Zhou K, Xie L, Li Y, Zhan Y, Qiao L, Qin C, Liu R, Hua Y (2014) Maternal medication use, fetal 3435 C > T polymorphism of the ABCB1 gene, and risk of isolated septal defects in a Han Chinese population. Pediatr Cardiol 35:1132–1141

    Article  PubMed  Google Scholar 

  75. Wei D, Bao H, Zhou N, Zheng GF, Liu XY, Yang YQ (2013) GATA5 loss-of-function mutation responsible for the congenital ventriculoseptal defect. Pediatr Cardiol 34:504–511

    Article  PubMed  Google Scholar 

  76. Wei D, Gong XH, Qiu G, Wang J, Yang YQ (2014) Novel PITX2c loss-of-function mutations associated with complex congenital heart disease. Int J Mol Med 33:1201–1208

    CAS  PubMed  Google Scholar 

  77. Werner P, Paluru P, Simpson AM, Latney B, Iyer R, Brodeur GM, Goldmuntz E (2014) Mutations in NTRK3 suggest a novel signaling pathway in human congenital heart disease. Hum Mutat 35:1459–1468

    Article  CAS  PubMed  Google Scholar 

  78. Xiang R, Fan LL, Huang H, Cao BB, Li XP, Peng DQ, Xia K (2014) A novel mutation of GATA4 (K319E) is responsible for familial atrial septal defect and pulmonary valve stenosis. Gene 534:320–323

    Article  CAS  PubMed  Google Scholar 

  79. Xu H, Morishima M, Wylie JN, Schwartz RJ, Bruneau BG, Lindsay EA, Baldini A (2004) Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract. Development 131:3217–3227

    Article  CAS  PubMed  Google Scholar 

  80. Xu YJ, Chen S, Zhang J, Fang SH, Guo QQ, Wang J, Fu QH, Li F, Xu R, Sun K (2014) Novel TBX1 loss-of-function mutation causes isolated conotruncal heart defects in Chinese patients without 22q11.2 deletion. BMC Med Genet 15:78

    Article  PubMed Central  PubMed  Google Scholar 

  81. Yagi H, Furutani Y, Hamada H, Sasaki T, Asakawa S, Minoshima S, Ichida F, Joo K, Kimura M, Imamura S, Kamatani N, Momma K, Takao A, Nakazawa M, Shimizu N, Matsuoka R (2003) Role of TBX1 in human del22q11.2 syndrome. Lancet 362:1366–1373

    Article  CAS  PubMed  Google Scholar 

  82. Yang YQ, Gharibeh L, Li RG, Xin YF, Wang J, Liu ZM, Qiu XB, Xu YJ, Xu L, Qu XK, Liu X, Fang WY, Huang RT, Xue S, Nemer G (2013) GATA4 loss-of-function mutations underlie familial tetralogy of Fallot. Hum Mutat 34:1662–1671

    Article  CAS  PubMed  Google Scholar 

  83. Yuan F, Zhao L, Wang J, Zhang W, Li X, Qiu XB, Li RG, Xu YJ, Xu L, Qu XK, Fang WY, Yang YQ (2013) PITX2c loss-of-function mutations responsible for congenital atrial septal defects. Int J Med Sci 10:1422–1429

    Article  PubMed Central  PubMed  Google Scholar 

  84. Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, Romano-Adesman A, Bjornson RD, Breitbart RE, Brown KK, Carriero NJ, Cheung YH, Deanfield J, DePalma S, Fakhro KA, Glessner J, Hakonarson H, Italia MJ, Kaltman JR, Kaski J, Kim R, Kline JK, Lee T, Leipzig J, Lopez A, Mane SM, Mitchell LE, Newburger JW, Parfenov M, Pe’er I, Porter G, Roberts AE, Sachidanandam R, Sanders SJ, Seiden HS, State MW, Subramanian S, Tikhonova IR, Wang W, Warburton D, White PS, Williams IA, Zhao H, Seidman JG, Brueckner M, Chung WK, Gelb BD, Goldmuntz E, Seidman CE, Lifton RP (2013) De novo mutations in histone-modifying genes in congenital heart disease. Nature 498:220–223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Zhao L, Ni SH, Liu XY, Wei D, Yuan F, Xu L, Xin-Li Li RG, Qu XK, Xu YJ, Fang WY, Yang YQ, Qiu XB (2014) Prevalence and spectrum of Nkx2.6 mutations in patients with congenital heart disease. Eur J Med Genet 57:579–586

    Article  PubMed  Google Scholar 

  86. Zheng J, Song H, Jiang S, Li T (2013) Congenital atresia of the left main coronary artery with noncompaction of the ventricular myocardium in an asymptomatic young child. Pediatr Cardiol 34:1998–2002

    Article  PubMed  Google Scholar 

  87. Zomer AC, Vaartjes I, van der Velde ET, de Jong HM, Konings TC, Wagenaar LJ, Heesen WF, Eerens F, Baur LH, Grobbee DE, Mulder BJ (2013) Heart failure admissions in adults with congenital heart disease; risk factors and prognosis. Int J Cardiol 168:2487–2493

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are really thankful to the participants for their dedication to the study. This work was supported in part by grants from the National Natural Science Fund of China (81270161) and the key program for Basic Research of Shanghai, China (14JC1405500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing-Yuan Liu or Yi-Qing Yang.

Additional information

Yun Pan and Zha-Gen Wang have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Wang, ZG., Liu, XY. et al. A Novel TBX1 Loss-of-Function Mutation Associated with Congenital Heart Disease. Pediatr Cardiol 36, 1400–1410 (2015). https://doi.org/10.1007/s00246-015-1173-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-015-1173-x

Keywords

Navigation