Skip to main content

Advertisement

Log in

Exercise Capacity in Children and Adolescents with Corrected Congenital Heart Disease

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Congenital heart disease promotes hemodynamic changes that can contribute to reduce exercise capacity. The aim of the study was to evaluate the exercise capacity of children and adolescents with cyanotic congenital heart disease and to assess respiratory muscle strength, plasma levels of B-type natriuretic peptide and ventricular ejection fraction, as well the associations between these variables. Cross-sectional study that evaluated 48 patients between 6 and 18 years-old that underwent a six-minute walk test (6MWT), respiratory muscle strength, dosage of B-type natriuretic peptide and echocardiography. The mean age was 13.3 ± 4.1 years, and the most prevalent heart disease was tetralogy of Fallot (54.2 %). The average distance walked was 452.7 ± 73.2 m, significantly below the predicted (69 %) (p < 0.001). The maximum inspiratory pressure was above the predicted result (111.4 %), average 58.2 ± 22.3 (p = 0.56), and the maximum expiratory pressure was 63.2 ± 23.3 cm H2O, significantly below the predicted (63 %) (p < 0.001). The level of B-type natriuretic peptide was elevated in all patients, with a median of 2087.17 (502.54–4,768.05). The ventricular ejection fraction showed a median of 65.9 (41–100). There was no correlation between the 6MWT, ventricular ejection fraction (r = −0.05; p = 0.72), inspiratory muscle strength (r = 0.03; p = 0.81), expiratory muscle strength (r = 0.09; p = 0.05) and B-type natriuretic peptide (r = −0.04; p = 0.77). Children and adolescents with cyanotic congenital heart disease present a lower exercise capacity and expiratory muscle strength. No associations were found between exercise capacity, respiratory muscle strength, B-type natriuretic peptide and left ventricular ejection fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adatia GJ, Kempt DJ, Taylor GK, Radda GK, Rajagopalant B, Haworth SG (1993) Abnormalities in skeletal muscle metabolism in cyanotic patients with congenital heart disease: a 31P nuclear magnetic resonance spectroscopy study. Clin Sci 85:105–109

    CAS  PubMed  Google Scholar 

  2. American Thoracic Society (2002) Statement guidelines for the six-minute walk test. Am J Respir Crit Care Med 166:111–117

    Article  Google Scholar 

  3. American Thoracic Society/American College of Chest Physicians (2003) ATS/ACCP statement on cardiopulmonary exercise testing. Am J Resp Crit Care Med 167:211–217

    Article  Google Scholar 

  4. American Thoracic Society/European Respiratory Society (2002) ATS/ERS statement on respiratory muscle testing. Am J Respir Crit Care Med 166(4):518–624

    Article  Google Scholar 

  5. Auslender M (2000) Pathophysiology of pediatric heart failure. Prog Pediatr Cardiol. 11:175–184

    Article  PubMed  Google Scholar 

  6. Bar-Mor G, Bar-Tal Y, Krulik T, Zeevi B (2004) Self-efficacy and physical activity in adolescence with trivial, mild, or moderate congenital cardiac malformations. Cardiol Young 14:373–379

    Article  Google Scholar 

  7. Baumgartner H, Bonhoeffer P, De Groot NM, de Haan F, Deanfield JE, Galie N et al (2010) Task force on the management of grown-up congenital heart disease of the European Society of Cardiology (ESC); Association for European Paediatric Cardiology (AEPC). ESC guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J 31(23):2915–2957

    Article  PubMed  Google Scholar 

  8. Carvalho JS, Shinebourne EA, Busst C, Rigby M, Redington AN (1992) Exercise capacity after complete repair of tetralogy of Fallot: deleterious effects of residual pulmonary regurgitation. Br Heart J 67:470–473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Cheung EWY, Lam WWM, Chiu SCW, Cheung SCW, Cheung YF (2007) Plasma brain natriuretic peptide levels, right ventricular volume overload and exercise capacity in adolescents after surgical repair of tetralogy of Fallot. Intern J Cardiol 121(2):155–162

    Article  Google Scholar 

  10. Daliento L, Mapelli D, Russo G, Scarso P, Limongi F, Lannizzi P, Melendugno A, Mazzotti E, Volpe B (2005) Health related quality of life in adults with repaired tetralogy of Fallot: psychosocial and cognitive outcomes. Heart 91:213–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Daniels L, Maisel AS (2007) Natriuretic peptides. J Am Coll Cardiol 50(25):2357–2368

    Article  CAS  PubMed  Google Scholar 

  12. de Lemos JA, McGuire DK (2003) Drazner MH—B-type natriuretic peptide in cardiovascular disease. Lancet 362:316–322

    Article  PubMed  Google Scholar 

  13. Domenech-Clar R, López-Andreu JA, Compte-Torrero L, De Diego-Damiá A, Macián-Gisbert V, Perpiná-Tordera M et al (2003) Maximal static respiratory pressures in children and adolescents. Pediatr Pulmonol 35(2):126–132

    Article  CAS  PubMed  Google Scholar 

  14. Elved R, Frederick KWL, Kevin S (2006) Validity of the 6-minute walk test for assessing heart rate recovery after an exercise-based cardiac rehabilitation programme. Physiotherapy 92(2):116–121

    Article  Google Scholar 

  15. Geiger R, Strasak A, Treml B, Gasser K, Kleinsasser Fischer V, Geiger H et al (2007) Six-minute walk test in children and adolescents. J Pediatr 150:395–399

    Article  PubMed  Google Scholar 

  16. Greutmann M, Le Lan T, Tobler D, Biaggi P, Oechslin EM, Silversides CK, Granton JT (2011) Generalised muscle weakness in young adults with congenital heart disease. Heart 97(14):1164–1168

    Article  PubMed  Google Scholar 

  17. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ (2008) Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 117(11):1436–1448

    Article  PubMed  Google Scholar 

  18. Inai K, Saita Y, Takeda S, Nakazawa M, Kimura H (2004) Skeletal muscle hemodynamics and endothelial function in patients after Fontan operation. Am J Cardiol 93:792–797

    Article  PubMed  Google Scholar 

  19. Khoshnood B, Lelong N, Houyel L et al (2012) Prevalence, timing of diagnosis and mortality of newborns with congenital heart defects: a population-based study. Heart 98:1667

    Article  PubMed  Google Scholar 

  20. Kruger S, Graf J, Kunz D, Stickel T, Hanrath P, Janssens U (2002) Brain natriuretic peptide levels predict functional capacity in patients with chronic heart failure. J Am Cardiol 40(4):718–722

    Article  CAS  Google Scholar 

  21. Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Wei R et al (2000) CDC growth charts for the United States: methods and development. National Center for Health Statistics. 2002 Vital Health Stat 11(246): 1–190

  22. Lang RM, Bierig M, Devereux RB et al (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Echocardiogr 18(12):1440–1463

    Article  Google Scholar 

  23. Matthews IL (2006) Per Morten Fredriksen, Per G. Bjørnstad, Erik Thaulow, Morten Gronn. Reduced pulmonary function in children with the Fontan circulation affects their exercise capacity. Cardiol Young 16:261–267

    Article  PubMed  Google Scholar 

  24. Moalla W, Gauthier R, Maingourd Y, Ahmaidi S (2005) Six-minute walking test to assess exercise tolerance and cardiorespiratory responses during training program in children with congenital heart disease. Int J Sports Med 26(9):756–762

    Article  CAS  PubMed  Google Scholar 

  25. Moola F, Faulkner GE, Kirsh JA, Kilburn J (2008) Physical activity and sport participation in youth with congenital heart disease: perceptions of children and parents. Adapt Phys Activ Q 25(1):49–70

    PubMed  Google Scholar 

  26. Moola F, McCrindle BW, Longmuir PE (2009) Physical activity participation in youth with surgically corrected congenital heart disease: devising guidelines so Johnny can participate. Paediatr Child Health 14(3):167–170

    PubMed Central  PubMed  Google Scholar 

  27. Neil F, Sear JW, French G et al (2000) Increases in serum concentrations of cardiac proteins and the prediction of early postoperative cardiovascular complications in noncardiac surgery patients. Anaesthesia 55:641–647

    Article  Google Scholar 

  28. Nixon PA, Joswiack ML, Friecker FJ (1996) A six-minute walk test for assessing exercise tolerance in severely ill children. J Pediatr 129(3):362–366

    Article  CAS  PubMed  Google Scholar 

  29. Norozi K, Gravenhorst V, Hobbiebrunken E, Wessel A (2005) Normality of cardiopulmonary capacity in children operated on to correct congenital heart defects. Arch Pediatr Adolesc Med 159:1063–1068

    Article  PubMed  Google Scholar 

  30. Pedra CA, Haddad J, Pedra SF, Peirone A, Pilla CB, Marin-Neto JA (2009) Paediatric and congenital heart disease in south America: an overview. Heart 95(17):1385–1392

    Article  CAS  PubMed  Google Scholar 

  31. Pfeiffer ME (2012) Teste de exercício cardiopulmonar em cardiopatas congênitos: visão do cardiopediatra. Rev DERC 18(4):114–117

    Google Scholar 

  32. Santos BGM, Moraes NS, Ibrahim MAR, Santos IM, Santos SC (2012) Correção cirúrgica de cardiopatias congênitas em recém-nascido. Insuf Card 7(4):184–189

    Google Scholar 

  33. Schulze-Neick I, Hartenstein P, Li J, Stiller B, Nagdyman N, Hubler M, et al (2003) Intravenous sildenafil is a potent pulmonary vasodilator in children with congenital heart disease. Circulation 108(Suppl 1):II167–II173

  34. Sen S, Bandhyopadhay B, Eriksson P, Chattopadhay A (2012) Functional capacity following univentricular repair: midterm outcome. Cong Heart Dis 7(5):423–432

    Article  Google Scholar 

  35. Skaluba SJ, Litwin SE (2004) Mechanisms of exercise intolerance: insights from tissue doppler imaging. Circulation 109(8):972–977

    Article  PubMed  Google Scholar 

  36. Solway S, Brooks D, Lacasse Y, Thomas AS (2001) Qualitative systematic overview of the measurement properties of functional walk tests used in the cardiorespiratory domain. Chest 119(1):256–270

    Article  CAS  PubMed  Google Scholar 

  37. Stromvall-Larsson ES, Eriksson BO, Sixt R (2003) Decreased lung function and exercise capacity in Fontan patients. A long-term follow-up. Scand Cardiovasc J 37:58–63

    Article  Google Scholar 

  38. Takken T, Hulzebos HJ, Blank AC, Tacken MH, Helders PJ, Strengers JL (2007) Exercise prescription for patients with a Fontan circulation: current evidence and future directions. Neth Heart J 15:142–147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Trojnarska O, Gwizdala A, Lanocha M, Katarzynska A, Katarzynski S, Oko-Sarnowska Z et al (2007) Exercise testing in adults after repair of aortic coarctation; evaluation of cardiopulmonar exercise capacity and B-type natriuretic protein levels. Tex Heart Inst J 34(4):412–419

    PubMed Central  PubMed  Google Scholar 

  40. Wagener JS, Hibbert ME, Landau LI (1984) Maximal respiratory pressures in children. Am Rev Respir Dis 129(5):873–875

    CAS  PubMed  Google Scholar 

  41. Westerlind A, Wahlander H, Lindstedt G, Lundberg PA, Holmegren D (2004) Clinical signs of heart failure are associated with increased levels of natriuretic peptide types b and a in children with congenital heart defects or cardiomyopathy. Acta Paediatr 93(3):340–345

    Article  CAS  PubMed  Google Scholar 

  42. Wilson SH, Cooke NT, Edwuards RHT, Spiro SG (1984) Predicted normal values for maximal respiratory pressures in caucasian adults and children. Thorax 39:535–538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

I declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janice Luisa Lukrafka.

Additional information

Academic link: This work is part of a master’s thesis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feltez, G., Coronel, C.C., Pellanda, L.C. et al. Exercise Capacity in Children and Adolescents with Corrected Congenital Heart Disease. Pediatr Cardiol 36, 1075–1082 (2015). https://doi.org/10.1007/s00246-015-1129-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-015-1129-1

Keywords

Navigation