Skip to main content

Advertisement

Log in

Recapitulating Long-QT Syndrome Using Induced Pluripotent Stem Cell Technology

  • Riley Symposium
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

The generation of patient-specific stem cells by reprogramming somatic cells to induced pluripotent stem cells (iPSC) provides the basis for a promising new type of in vitro disease models. Patient-specific iPSC derived from individuals with hereditary disorders can be differentiated into somatic cells in vitro, thus allowing the pathophysiology of the diseases to be studied on a cellular level. Different types of long-QT syndrome have been successfully modeled using this approach, demonstrating that the iPSC-derived patient-specific cardiomyocytes recapitulated key features of the disease in vitro. This approach will likely serve to model other monogenetic or polygenetic cardiovascular disorders in the future. Moreover, test platforms based on patient-specific iPSC could be used to test the potential of drug candidates to induce QT-interval prolongation or other unwanted side effects, screen for novel cardiovascular drugs, or to tailor medical therapy to the specific needs of a single patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Antzelevitch C (2005) Role of transmural dispersion of repolarization in the genesis of drug-induced torsades de pointes. Heart Rhythm 2(Suppl 2):S9–S15

    Article  PubMed  Google Scholar 

  2. Antzelevitch C, Brugada P, Borggrefe M, Brugada J, Brugada R, Corrado D et al (2005) Brugada syndrome: report of the second consensus conference: endorsed by the heart rhythm society and the European heart rhythm association. Circulation 111(5):659

    Article  PubMed  Google Scholar 

  3. Azaouagh A, Churzidse S, Konorza T, Erbel R (2011) Arrhythmogenic right ventricular cardiomyopathy/dysplasia: a review and update. Clin Res Cardiol 100:383–394

    Article  PubMed  CAS  Google Scholar 

  4. Beffagna G, Occhi G, Nava A, Vitiello L, Ditadi A, Basso C et al (2005) Regulatory mutations in transforming growth factor-beta3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc Res 65:366–373

    Article  PubMed  CAS  Google Scholar 

  5. Brown ME, Rondon E, Rajesh D, Mack A, Lewis R, Feng X et al (2010) Derivation of induced pluripotent stem cells from human peripheral blood T lymphocytes. PLoS One 5(6):e11373

    Article  PubMed  Google Scholar 

  6. Dessertenne F (1966) La tachycardie ventriculaire à deux foyers opposés variables. Arch Mal Coeur 59:263–272

    PubMed  CAS  Google Scholar 

  7. Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA et al (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457:277–280

    Article  PubMed  CAS  Google Scholar 

  8. Eckardt L, Haverkamp W, Borggrefe M, Breithardt G (1998) Experimental models of torsade de pointes. Cardiovasc Res 39:178–193

    Article  PubMed  CAS  Google Scholar 

  9. Fatima A, Xu G, Shao K, Papadopoulos S, Lehmann M, Arnáiz-Cot JJ et al (2011) Cell Physiol Biochem 28:592–597

    Article  Google Scholar 

  10. Gaita F, Giustetto C, Bianchi F, Wolpert C, Schimpf R, Riccardi R et al (2003) Short QT syndrome: a familial cause of sudden death. Circulation 108(8):965–970

    Article  PubMed  Google Scholar 

  11. Giorgi MA, Bolanos R, Gonzalez CD, Di Girolamo G (2010) QT interval prolongation: preclinical and clinical testing arrhythmogenesis in drugs and regulatory implications. Curr Drug Saf 5:54–57

    Article  PubMed  Google Scholar 

  12. Giustetto C, Di Monte F, Wolpert C, Borggrefe M, Schimpf R, Sbragia P et al (2006) Short QT syndrome: clinical findings and diagnostic-therapeutic implications. Eur Heart 27(20):2440

    Article  Google Scholar 

  13. He J-Q, Ma Y, Lee Y, Thomson JA, Kamp TJ (2003) Human embryonic stem cells develop into multiple types of cardiac myocytes. Action potential characterization. Circ Res 93:32–39

    Article  PubMed  CAS  Google Scholar 

  14. Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A et al (2011) Modelling the long-QT syndrome with induced pluripotent stem cells. Nature 471(7337):225–229

    Article  PubMed  CAS  Google Scholar 

  15. Jung CB, Moretti A, Mederos Y Schnitzler M, Iop L, Storch U et al (2011) Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO Mol Med. doi:10.1002/emmm.201100194

    Google Scholar 

  16. Kannankeril PJ, Roden DM, Norris KJ, Whalen SP, George AL Jr, Murray KT (2005) Genetic susceptibility to acquired long QT syndrome: pharmacologic challenge in first-degree relatives. Heart Rhythm 2(2):134–140

    Article  PubMed  Google Scholar 

  17. Keller GM (1995) In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol 7(6):862–869

    Article  PubMed  CAS  Google Scholar 

  18. Lasser KE, Allen PD, Woolhandler SJ, Himmelstein DU, Wolfe SM, Bor DH (2002) Timing of new black box warnings and withdrawals for prescription medications. JAMA 287:2215–2220

    Article  PubMed  Google Scholar 

  19. Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA et al (2009) Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461:402–406

    Article  PubMed  CAS  Google Scholar 

  20. Lehnart SE, Ackerman MJ, Benson W, Brugada R, Clancy CE, Donahue JK et al (2007) Inherited arrhythmias. A national heart, lung, and blood institute and office of rare diseases workshop consensus report about the diagnosis, phenotyping, molecular mechanisms, and therapeutic approaches for primary cardiomyopathies of gene mutations affecting ion channel function. Circulation 116:2325–2345

    Article  PubMed  CAS  Google Scholar 

  21. Maltsev VA, Rohwedel J, Hescheler J, Wobus AM (1993) Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech Dev 44(1):41–50

    Article  PubMed  CAS  Google Scholar 

  22. Maron BJ, Thompson PD, Puffer JC, McGrew CA, Strong WB, Douglas PS et al (1996) Cardiovascular preparticipation screening of competitive athletes. A statement for health professionals from the sudden death committee (clinical cardiology) and congenital cardiac defects committee (cardiovascular disease in the young), American heart association. Circulation 94:850–856

    Article  PubMed  CAS  Google Scholar 

  23. Matsa E, Rajamohan D, Dick E, Young L, Mellor I, Stainforth A et al (2011) Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long-QT syndrome type 2 mutation. Eur Heart J 32(8):952–962

    Article  PubMed  CAS  Google Scholar 

  24. Merner ND, Hodgkinson KA, Haywood AF, Connors S, French VM, Drenckhahn JD et al (2008) Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the TMEM43 gene. Am J Hum Genet 82:809–821

    Article  PubMed  CAS  Google Scholar 

  25. Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flügel L et al (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363(15):1397–1409

    Article  PubMed  CAS  Google Scholar 

  26. Novak A, Shtrichman R, Germanguz I, Segev H, Zeevi-Levin N, Fishman B et al (2010) Enhanced reprogramming and cardiac differentiation of human keratinocytes derived from plucked hair follicles using a single excisable lentivirus. Cell Reprogram 12(6):665–678

    Article  PubMed  CAS  Google Scholar 

  27. Novak A, Barad L, Zeevi-Levin N, Shick R, Shtreichman R, Lorber A et al (2011) Cardiomyocytes generated from CPVT(D307H) patients are arrhythmogenic in response to β-adrenergic stimulation. J Cell Mol Med 16(3):468–482

    Article  Google Scholar 

  28. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317

    Article  PubMed  CAS  Google Scholar 

  29. Peal DS, Mills RW, Lynch SN, Mosley JM, Lim E, Ellinor PT et al (2011) Novel chemical suppressors of long QT syndrome identified by an in vivo functional screen. Circulation 123:23–30

    Article  PubMed  Google Scholar 

  30. Priori S, Chen SRW (2011) Inherited dysfunction of sarcoplasmic reticulum Ca2+ handling and arrhythmogenesis. Circ Res 108:871–883

    Article  PubMed  CAS  Google Scholar 

  31. Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C et al (2003) Hypertrophic cardiomyopathy. Distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 107:2227–2232

    Article  PubMed  Google Scholar 

  32. Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81:299–307

    Article  PubMed  CAS  Google Scholar 

  33. Schmitt N, Calloe K, Nielsen NH, Buschmann M, Speckmann EJ, Schulze-Bahr E et al (2007) The novel C-terminal KCNQ1 mutation M520R alters protein trafficking. Biochem Biophys Res Commun 358(1):304–310

    Article  PubMed  CAS  Google Scholar 

  34. Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G et al (2009) Prevalence of the congenital long-QT syndrome. Circulation 120:1761–1767

    Article  PubMed  Google Scholar 

  35. Sidhu KS (2011) New approaches for the generation of induced pluripotent stem cells. Expert Opin Biol Ther 11(5):569–579

    Article  PubMed  CAS  Google Scholar 

  36. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  37. Takahashi T, Lord B, Schulze PC, Fryer RM, Sarang SS, Gullans SR et al (2003) Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107:1912–1916

    Article  PubMed  CAS  Google Scholar 

  38. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  PubMed  CAS  Google Scholar 

  39. Thomas D, Khali M, Alter M, Schweizer PA, Karle CA, Wimmer AB et al (2010) Biophysical characterization of KCNQ1 P320 mutations linked to long QT syndrome 1. J Mol Cell Cardiol 48(1):230–237

    Article  PubMed  CAS  Google Scholar 

  40. Tiburcy M, Didié M, Boy O, Christalla P, Doeker S, Naito H, Karikkineth BC et al (2011) Terminal differentiation, advanced organotypic maturation, and modeling of hypertrophic growth in engineered heart tissue. Circ Res 109(10):1105–1114

    Article  PubMed  CAS  Google Scholar 

  41. Tiso N, Stephan DA, Nava A, Bagattin A, Devaney JM, Stanchi F et al (2001) Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet 10:189–194

    Article  PubMed  CAS  Google Scholar 

  42. Tran TH, Wang X, Browne C, Zang Y, Schinke M, Izumo S et al (2009) Wnt3a-induced mesoderm formation and cardiomyogenesis in human embryonic stem cells. Stem Cells 27:1869–1878

    Article  PubMed  CAS  Google Scholar 

  43. Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD et al (2011) Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109(1):47–59

    Article  PubMed  CAS  Google Scholar 

  44. van Tintelen JP, Entius MM, Bhuiyan ZA, Jongbloed R, Wiesfeld ACP, Wilde AAM et al (2006) Plakophilin-2 mutations are the major determinant of familial arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation 113:1650–1658

    Article  PubMed  Google Scholar 

  45. Watkins H, Ashrafian H, Redwood C (2011) Inherited cardiomyopathies. N Engl J Med 364:1643–1656

    Article  PubMed  CAS  Google Scholar 

  46. Wilde AA, Antzelevitch C, Borggrefe M, Brugada J, Brugada R, Brugada P et al (2002) Proposed diagnostic criteria for the Brugada syndrome. Eur Heart J 23(21):1648

    PubMed  CAS  Google Scholar 

  47. Wu G, Ai T, Kim JJ, Mohapatra B, Xi Y, Li Z et al (2008) α-1-syntrophin mutation and the long-QT syndrome: a disease of sodium channel disruption. Circ Arrhythm Electrophysiol 1(3):193–201

    Article  PubMed  CAS  Google Scholar 

  48. Yang P, Kanki H, Drolet B, Yang T, Wei J, Viswanathan PC et al (2002) Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation 105(16):1943–1948

    Article  PubMed  CAS  Google Scholar 

  49. Yang Y, Yang Y, Liang B, Liu J, Li J, Grunnet M et al (2010) Identification of a Kir3.4 mutation in congenital long QT syndrome. Am J Hum Genet 86:872–880

    Article  PubMed  CAS  Google Scholar 

  50. Yazawa M, Hsue B, Jia X, Pasca A, Bernstein JA, Hallmayer J et al (2011) Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471(7337):230–234

    Article  PubMed  CAS  Google Scholar 

  51. Ye L, Chang JC, Lin C, Sun X, Yu J, Kan YW (2009) Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proc Natl Acad Sci USA 106(24):9826–9830

    Article  PubMed  CAS  Google Scholar 

  52. Yu J, Vodyanìk MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Sinnecker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dirschinger, R.J., Goedel, A., Moretti, A. et al. Recapitulating Long-QT Syndrome Using Induced Pluripotent Stem Cell Technology. Pediatr Cardiol 33, 950–958 (2012). https://doi.org/10.1007/s00246-012-0286-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-012-0286-8

Keywords

Navigation