Skip to main content
Log in

Weak Convergence of a Mass-Structured Individual-Based Model

  • Published:
Applied Mathematics & Optimization Submit manuscript

An Erratum to this article was published on 07 March 2015

Abstract

We propose a model of chemostat where the bacterial population is individually-based, each bacterium is explicitly represented and has a mass evolving continuously over time. The substrate concentration is represented as a conventional ordinary differential equation. These two components are coupled with the bacterial consumption. Mechanisms acting on the bacteria are explicitly described (growth, division and washout). Bacteria interact via consumption. We set the exact Monte Carlo simulation algorithm of this model and its mathematical representation as a stochastic process. We prove the convergence of this process to the solution of an integro-differential equation when the population size tends to infinity. Finally, we propose several numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Note that our situation is simpler than that studied by Roelly-Coppoletta [26] and Mard and Roelly[19] since in our case \({\mathcal {X}}\) is compact: in fact in our case the weak topology—the smallest topology which makes the applications \(\nu \rightarrow \langle \nu ,f \rangle \) continuous for any \(f\) continuous and bounded—and the vague topology—the smallest topology which makes the applications \(\nu \rightarrow \langle \nu ,f \rangle \) continuous for all \(f\) continuous with compact support—are identical.

References

  1. Allen, L.J.: An Introduction to Stochastic Processes with Biology Applications. Prentice Hall, Upper Saddle River (2003)

    Google Scholar 

  2. Billingsley, P.: Convergence of Probability Measures. John Wiley & Sons, New York (1968)

    Google Scholar 

  3. Campillo, F., Fritsch, C.: A mass-structured individual-based model of the chemostat: convergence and simulation. ArXiv Mathematics e-prints. arXiv:1308.2411 [math.ST] (2013)

  4. Campillo, F., Joannides, M., Larramendy-Valverde, I.: Stochastic modeling of the chemostat. Ecol. Model. 222(15), 2676–2689 (2011)

    Article  Google Scholar 

  5. Champagnat, N.: A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stoch. Process. Appl. 116(8), 1127–1160 (2006)

    Article  MathSciNet  Google Scholar 

  6. Champagnat, N., Jabin, P.-E., Méléard, S.: Adaptation in a stochastic multi-resources chemostat model. J. Math. Pure. Appl. 101(6), 755–788 (2014)

  7. Daley, D., Vere-Jones, D.: An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods, 2nd edn. Springer, New York (2003)

    Google Scholar 

  8. Daoutidis, P., Henson, M.A.: Dynamics and control of cell populations in continuous bioreactors. AIChE Symp. Ser. 326, 274–289 (2002)

    Google Scholar 

  9. Donald, A.: Dawson. Measure-valued markov processes. In: Hennequin, P.-L. (ed.) École d’Été de Probabilités de Saint-Flour XXI–1991. Lecture Notes in Mathematics, vol. 1541, pp. 1–250. Springer-Verlag, Berlin (1993)

    Chapter  Google Scholar 

  10. DeAngelis, Donald L., Gross, Louis J. (eds.): Individual-based models and approaches in ecology: populations, communities and ecosystems. Chapman and Hall, New York (1992)

    Google Scholar 

  11. Diekmann, O., Jabin, P.-E., Mischler, S., Perthame, B.: The dynamics of adaptation: an illuminating example and a Hamilton–Jacobi approach. Theor. Popul. Biol. 67(4), 257–271 (2005)

    Article  Google Scholar 

  12. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. John Wiley & Sons, New York (1986)

    Book  Google Scholar 

  13. Finkelshtein, D., Kondratiev, Y., Kutoviy, O.: Kutoviy. Individual based model with competition in spatial ecology. SIAM J. Math. Anal. 41, 297–317 (2009)

    Article  MathSciNet  Google Scholar 

  14. Fournier, N., Méléard, S.: A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann. Appl. Probab. 14(4), 1880–1919 (2004)

    Article  MathSciNet  Google Scholar 

  15. Fredrickson, A.G., Ramkrishna, D., Tsuchiya, H.M.: Statistics and dynamics of procaryotic cell populations. Math. Biosci. 1(3), 327–374 (1967)

    Article  Google Scholar 

  16. Henson, M.A.: Dynamic modeling and control of yeast cell populations in continuous biochemical reactors. Comput. Chem. Eng. 27(8–9), 1185–1199 (2003)

    Article  Google Scholar 

  17. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. North-Holland/Kodansha, Tokyo (1981)

    Google Scholar 

  18. Joffe, A., Métivier, M.: Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv. Appl. Probab. 18, 20–65 (1986)

    Article  Google Scholar 

  19. Méléard, S., Roelly, S.: Sur les convergences étroite ou vague de processus à valeurs mesures. C. R. Acad. Sci. Paris Sér. 1(317), 785–788 (1993)

    Google Scholar 

  20. Mirrahimi, S., Perthame, B., Wakano, J.Y.: Direct competition results from strong competition for limited resource. J. Math. Biol. 68(4), 931–949 (2014)

  21. Mirrahimi, S., Perthame, B., Wakano, J.Y.: Evolution of species trait through resource competition. J. Math. Biol. 64(7), 1189–1223 (2012)

    Article  MathSciNet  Google Scholar 

  22. Monod, J.: La technique de culture continue, théorie et applications. Ann. Inst. Pasteur 79(4), 390–410 (1950)

    Google Scholar 

  23. Novick, A., Szilard, L.: Description of the chemostat. Science 112(2920), 715–716 (1950)

    Article  Google Scholar 

  24. Ramkrishna, D.: Statistical Models of Cell Populations. Advances in Biochemical Engineering, vol. 11, pp. 1–47. Springer, Berlin (1979)

    Google Scholar 

  25. Ramkrishna, D.: Population Balances: Theory and Applications to Particulate Systems in Engineering. Elsevier Science, San Diego (2000)

    Google Scholar 

  26. Roelly-Coppoletta, S.: A criterion of convergence of measure-valued processes: application to measure branching processes. Stochastics 17(1–2), 43–65 (1986)

    Article  MathSciNet  Google Scholar 

  27. Rüdiger, B., Ziglio, G.: Itô formula for stochastic integrals w.r.t. compensated Poisson random measures on separable Banach spaces. Stoch. Int. J. Probab. Stoch. Process. 78(6), 377–410 (2006)

    Article  Google Scholar 

  28. Smith, H.L., Waltman, P.E.: The Theory of the Chemostat: Dynamics of Microbial Competition. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  29. Tran, V.C.: Modèles particulaires stochastiques pour des problèmes d’évolution adaptative et pour l’approximation de solutions statistiques. PhD thesis, Université de Nanterre - Paris X (2006)

  30. Tran, V.C.: Large population limit and time behaviour of a stochastic particle model describing an age-structured population. ESAIM 12, 345–386 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Jme Harmand and Claude Lobry for discussions on the model, to Pierre Pudlo and Pascal Neveu for their help concerning the programming of the IBM. This work is partially supported by the project “Modles Numriques pour les cosystmes Microbiens” of the French National Network of Complex Systems (RNSC call 2012). The work of Coralie Fritsch is partially supported by the Meta-omics of Microbial Ecosystems (MEM) metaprogram of INRA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Campillo.

Additional information

Fabien Campillo and Coralie Fritsch are members of the MODEMIC joint INRA and INRIA project-team.

Appendix: Skorohod Topology

Appendix: Skorohod Topology

The space of finite measures \({\mathcal {M}}_{F}(\mathcal {X})\) on \({\mathcal {X}}\) is equipped with the topology of the weak convergence, that is the smallest topology for which the applications \(\zeta \rightarrow \langle \zeta ,f \rangle =\int _{{\mathcal {X}}}f(x)\,\zeta ({\mathrm{d }}x)\) are continuous for any \(f\in \mathcal {C}(\mathcal {X})\). This topology is metrized by the Prokhorov metric:

$$\begin{aligned} d_\mathrm{\tiny \mathrm PR }(\zeta ,\zeta ')&\mathop {=}\limits ^\mathrm{\tiny def }\inf \Bigl \{ \epsilon >0\quad \zeta (F)\le \zeta '(F^\epsilon )+\epsilon \\&\quad \zeta '(F)\le \zeta (F^\epsilon )+\epsilon \,,\ \mathrm{ for all closed }F\subset {\mathcal {X}}\Bigr \}, \end{aligned}$$

where \(F^\epsilon \mathop {=}\limits ^\mathrm{\tiny def }\{x\in {\mathcal {X}};\inf _{y\in F}|x-y|<\epsilon \}\) (see [7, Appendix A2.5]). The Prokhorov distance is bounded by the distance of the total variation \(d_\mathrm{\tiny \mathrm TV }(\zeta ,\zeta ')=\Vert \zeta -\zeta ' \Vert _\mathrm{\tiny TV }\) associated with the norm defined by:

$$\begin{aligned} \Vert \zeta \Vert _\mathrm{\tiny TV } \mathop {=}\limits ^\mathrm{\tiny def }\sup _{A\in {\mathcal {B}}({\mathcal {X}})}|\zeta (A)+\zeta (A^c)| = \zeta _{+}({\mathcal {X}})+ \zeta _{-}({\mathcal {X}}) = \sup _{\begin{array}{c} f\mathrm{ continuous }\\ \left\| f \right\| _{\infty }\le 1 \end{array}} |\langle \zeta ,f \rangle | \end{aligned}$$

for any finite and signed measure \(\zeta \) where \(\zeta =\zeta _{+}-\zeta _{-}\) is the Hahn–Jordan decomposition of \(\zeta \).

The space \(\mathcal D([0,T],{\mathcal {M}}_{F}(\mathcal {X}))\) is equipped with the Skorohod metric \(d_\mathrm{\tiny \mathrm S }\). Instead of giving the definition of this metric [12, Eq. (5.2) p. 117] we recall a characterization of the convergence for this metric given in [12, Proposition 5.3, p. 119].

A sequence \((\zeta ^{n})_{n\in \mathbb N}\) converges to \(\zeta \) in \({\mathcal {D}}([0,T],{\mathcal {M}}_{F}(\mathcal {X}))\), i.e. \(d_\mathrm{\tiny \mathrm S }(\zeta ^{n},\zeta )\rightarrow 0\), if and only if there exists a sequence \(\lambda _{n}(t)\) of time change functions (i.e. strictly increasing bijective functions on \([0,T]\), with \(\lambda _{n}(0)=0\) and \(\lambda _{n}(T)=T\)) satisfying:

$$\begin{aligned} \sup _{0\le t\le T} d_\mathrm{\tiny \mathrm PR }({\zeta _t^{n},\zeta _{\lambda _{n}(t)}}) \xrightarrow [n\rightarrow \infty ]{} 0 \end{aligned}$$
(25)

and

$$\begin{aligned} \sup _{0\le t\le T}|\lambda _{n}(t)-t|\rightarrow 0. \end{aligned}$$
(26)

If \((\zeta ^{n})_{n\in \mathbb N}\) converges to \(\zeta \) in \({\mathcal {D}}([0,T],{\mathcal {M}}_{F}(\mathcal {X}))\) and if \(\zeta \in {\mathcal {C}}([0,T],{\mathcal {M}}_{F}({\mathcal {X}}))\) then in:

$$\begin{aligned} \sup _{0\le t\le T}d_\mathrm{\tiny \mathrm PR }(\zeta ^{n}_{t},\zeta _{t}) \le \sup _{0\le t\le T}d_\mathrm{\tiny \mathrm PR }(\zeta ^{n}_{t},\zeta _{\lambda _n(t)}) + \sup _{0\le t\le T}d_\mathrm{\tiny \mathrm PR }(\zeta _{\lambda _n(t)},\zeta _{t}) \end{aligned}$$

the first term of the right-hand side tends to 0 because of (25); the second one tends to 0 because of (26) and the uniform continuity of \(\zeta \) in \([0,T]\). This proves that \(\zeta ^{n}\) converges to \(\zeta \) in \({\mathcal {D}}([0,T],{\mathcal {M}}_{F}(\mathcal {X}))\) also for the uniform metric.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campillo, F., Fritsch, C. Weak Convergence of a Mass-Structured Individual-Based Model. Appl Math Optim 72, 37–73 (2015). https://doi.org/10.1007/s00245-014-9271-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-014-9271-3

Keywords

Mathematics Subject Classification

Navigation