Skip to main content
Log in

On the Existence of Regular Global Attractor for \(p\)-Laplacian Evolution Equation

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this study, we consider the nonlinear evolution equation of parabolic type

$$\begin{aligned} u_t-\mathrm{div}\big (|\nabla u|^{p-2}\nabla u\big )+f(u)=g. \end{aligned}$$

We analyze the long time dynamics (in the sense of global attractors) under very general conditions on the nonlinearity \(f\). Since we do not assume any polynomial growth condition on it, the main difficulty arises at first in the proof of well-posedness. In fact, the very first contribution to this problem is a pioneering paper (Efendiev and Ôtano, Differ Int Equ 20:1201–1209, 2007) where the well-posedness result has been shown by exploiting the technique from the theory of maximal monotone operators. However, from some physical aspects, to obtain the solution in variational sense might be demanding which requires limiting procedure on the approximate solutions. In this work, we are interested in variational (weak) solution. The critical issue in the proof of well-posedness is to deal with the limiting procedure on \(f\) which is overcome utilizing the weak convergence tecniques in Orlicz spaces (Geredeli and Khanmamedov, Commun Pure Appl Anal 12:735–754, 2013; Krasnosel’skiĭ and Rutickiĭ, Convex functions and Orlicz spaces, 1961). Then, proving the existence of the global attractors in \(L^2(\Omega )\) and in more regular space \(W_0^{1,p}(\Omega )\), we show that they coincide. In addition, if \(f\) is monotone and \(g=0\), we give an explicit estimate of the decay rate to zero of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here and in what follows, the formal multiplications are justified within a suitable approximation scheme.

  2. Here we use the fact that \(H\) is convex with \(H(0)=0\), hence \(H(\nu s)\le \nu H(s)\) for every \(\nu \in [0,1]\).

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Astarita, G., Marrucci, G.: Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill, NewYork (1974)

    Google Scholar 

  3. Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations. North-Holland, Amsterdam (1992)

    MATH  Google Scholar 

  4. Brézis, H.: Opérateurs Maximaux Monotone et Semi-Groupes de Contractions dans les Espaces Hilbert. Mathematics Studies 5. North-Holland, Amsterdam (1973)

    Google Scholar 

  5. Carvalho, A.N., Cholewa, J.W., Dlotko, T.: Global attractors for problems with monotone operators. Boll. Unione Mat. Ital. Sez. B 8, 693–706 (1999)

    MathSciNet  Google Scholar 

  6. Carvalho, A.N., Gentile, C.B.: Asymptotic behavior of non-linear parabolic equations with monotone principal part. J. Math. Anal. Appl. 280, 252–272 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chepyzhov, V.V., Vishik, M.I.: Attractors for Equations of Mathematical Physics. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  8. Chueshov, I., Lasiecka, I.: Long-time behaviour of second order evolution equations with nonlinear damping. Mem. Am. Math. Soc. 195, 183 (2008)

    MathSciNet  Google Scholar 

  9. DiBenedetto, E.: Degenerate Parabolic Equations. Universitext. Springer-Verlag, New York (1993)

    Book  Google Scholar 

  10. Efendiev, M.A., Ôtano, M.: Infinite-dimensional attractors for evolution equations with \(p\)-Laplacian and their Kolmogorov entropy. Differ. Int. Equ. 20, 1201–1209 (2007)

    MATH  Google Scholar 

  11. Esteban, J.R., Vazquez, J.L.: On the equation of turbulent filtration in one-dimensional porous media. Nonlinear Anal. 210, 1303–1325 (1986)

    Article  MathSciNet  Google Scholar 

  12. Geredeli, P.G., Khanmamedov, A.: Long-time dynamics of the parabolic \(p\)-Laplacian equation. Commun. Pure Appl. Anal. 12, 735–754 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hale, J.K.: Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence (1988)

    MATH  Google Scholar 

  14. Haraux, A.: Systèmes Dynamiques Dissipatifs et Applications. Masson, Paris (1991)

    MATH  Google Scholar 

  15. Kalašnikov, A.S.: A nonlinear equation arising in the theory of nonlinear filtration (Russian). Trudy Sem. Petrovsk. 4, 137–146 (1978)

    Google Scholar 

  16. Keller, H.B., Cohen, D.S.: Some positone problems suggested by nonlinear heat generation. J. Math. Mech. 16, 1361–1376 (1967)

    MATH  MathSciNet  Google Scholar 

  17. Krasnosel’skiĭ, M.A., Rutickiĭ, Y.B.: Convex Functions and Orlicz Spaces. P. Noordhoff Ltd., Groningen (1961)

    Google Scholar 

  18. Liu, Y., Yang, L., Zhong, C.: Asymptotic regularity for \(p\)-Laplacian equation. J. Math. Phys. 51, 052702 (2010)

    Article  MathSciNet  Google Scholar 

  19. Pata, V., Zelik, S.: Smooth attractors for strongly damped wave equations. Nonlinearity 19, 1495–1506 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pata, V., Zelik, S.: A result on the existence of global attractors for semigroups of closed operators. Commun. Pure Appl. Anal. 6, 481–486 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Robinson, J.C.: Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  22. Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  23. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1988)

    Book  MATH  Google Scholar 

  24. Yang, M., Sun, C., Zhong, C.: Global attractors for \(p\)-Laplacian equation. J. Math. Anal. Appl. 327, 1130–1142 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author would like to thank the anonymous referee for the valuable comments and careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pelin G. Geredeli.

Appendix

Appendix

We report two technical lemmas needed in the investigation. The first can be inferred from [12], whereas the second one is a variant of the uniform Gronwall lemma [23], and is implicitly contained in [19]. For the reader’s convenience, we provide a short proof of both.

Lemma 6.1

Let \(u_n:\Omega _T\rightarrow \mathbb {R}\) be a sequence of functions, and let \(h\in {\mathcal C}(\mathbb {R})\) be strictly increasing with \(h(0)=0\). Assume that the convergence \(u_n(x,t)\rightarrow u(x,t)\) holds for almost every \((x,t)\in \Omega _T=\Omega \times (0,T)\), and

$$\begin{aligned} \int _{\Omega _T} h(u_n)u_n\,\mathrm{d}x\mathrm{d}t\le a, \end{aligned}$$
(6.1)

for some \(a\ge 0\) independent of \(n\). Then both \(h(u_n)\) and \(h(u)\) belong to \(L^1(\Omega _T)\), and for every test function \(\zeta \in {\mathcal C}^\infty _0([0,T],W)\) we have the convergence

$$\begin{aligned} \int _{\Omega _T} h(u_n)\zeta \,\mathrm{d}x\mathrm{d}t\rightarrow \int _{\Omega _T} h(u)\zeta \,\mathrm{d}x\mathrm{d}t. \end{aligned}$$
(6.2)

Proof

We begin to show that

$$\begin{aligned} \int _{\Omega _T} |h(u_n)|\,\mathrm{d}x\mathrm{d}t\le b, \end{aligned}$$

where \(b=a+|\Omega _T|\sup _{|s|\le 1}|h(s)|\). In turn, by the Fatou lemma we readily obtain

$$\begin{aligned} \int _{\Omega _T} |h(u)|\,\mathrm{d}x\mathrm{d}t\le b. \end{aligned}$$

To this end, for a fixed \(n\), let us decompose \(\Omega _T\) as \(\Omega _T^+\cup \Omega _T^-\), where \(\Omega _T^+=\Omega _T\cap \{|u_n|\ge 1\}\) and \(\Omega _T^-=\Omega _T\cap \{|u_n|< 1\}\). Since \(h(u_n)u_n\) is positive, we get

$$\begin{aligned} \int _{\Omega _T} |h(u_n)|\,\mathrm{d}x\mathrm{d}t&\le \int _{\Omega _T^+} |h(u_n)u_n|\,\mathrm{d}x\mathrm{d}t+\int _{{\Omega _T}^-} |h(u_n)|\,\mathrm{d}x\mathrm{d}t\\&\le \int _{\Omega _T} h(u_n)u_n\,\mathrm{d}x\mathrm{d}t+|\Omega _T|\sup _{|u_n|< 1}|h(u_n)|\le b. \end{aligned}$$

By (6.1), it follows that

$$\begin{aligned} \int _{\Omega _T} h(u_n^{+})u_n^{+}\mathrm{d}x\mathrm{d}t + \int _{\Omega _T} h(u_n^{-})u_n^{-}\mathrm{d}x\mathrm{d}t \le a, \end{aligned}$$

where \(u_n^{+}= \max \{u_n,0\}\) and \(u_n^{-}=\min \{u_n,0\}\). Taking into account the properties of \(h\), we can define the \(N\)-function (see [1, 17] for the definition)

$$\begin{aligned} H(\xi )=\int _{0}^{\xi } h^{-1}(s)\mathrm{d}s,\quad \xi \ge 0. \end{aligned}$$

It is then apparent that

$$\begin{aligned} \int _{\Omega _T} H(h(u_{n}^{+}))\,\mathrm{d}x\mathrm{d}t \le \int _{\Omega _T} h(u_{n}^{+})u_{n}^{+}\,\mathrm{d}x\mathrm{d}t \le a. \end{aligned}$$

Introducing the Orlicz space \(L_{H}({\Omega _T})\) (see [1, 17]), which is a Banach space with respect to the so-called Luxemburg norm

$$\begin{aligned} \Vert v\Vert _{L_{H}({\Omega _T})}=\inf \left\{ k>0:\,\int _{\Omega _T}H\big (k^{-1}|v|\big ) \,\mathrm{d}x\mathrm{d}t\le 1\right\} , \end{aligned}$$

the latter inequality provides the boundFootnote 2

$$\begin{aligned} \Vert h(u_n^{+})\Vert _{L_{H}({\Omega _T})} \le 1+a. \end{aligned}$$

Since \(u_n(x,t)\rightarrow u(x,t)\) for almost every \((x,t)\in {\Omega _T}\) and \(h\) is continuous, we infer that \(h(u_n^{+})\rightarrow h(u^{+})\) in measure. Appealing to [17, Theorem 14.6], these two facts imply the convergence

$$\begin{aligned} \int _{\Omega _T} h(u_n^{+})\zeta \,\mathrm{d}x\mathrm{d}t\rightarrow \int _{\Omega _T} h(u^{+})\zeta \,\mathrm{d}x\mathrm{d}t, \end{aligned}$$

for every \(\zeta \in {\mathcal C}_0^{\infty }([0,T],W)\). By a similar argument, making use of the Orlicz space \(L_{G}({\Omega _T})\) relative to the function

$$\begin{aligned} G(\xi )=\int _{0}^{\xi } -h^{-1}(-s)\mathrm{d}s,\quad \xi \ge 0, \end{aligned}$$

we can prove that

$$\begin{aligned} \int _{\Omega _T} h(u_n^{-})\zeta \,\mathrm{d}x\mathrm{d}t\rightarrow \int _{\Omega _T} h(u^{-})\zeta \,\mathrm{d}x\mathrm{d}t. \end{aligned}$$

Recalling that \(h(0)=0\), the claimed convergence (6.2) is established. \(\square \)

Lemma 6.2

Let \(\phi \) be a nonnegative absolutely continuous function on \([0,\infty )\) satisfying for some \(\varepsilon >0\) and some nonnegative function \(\psi \) the differential inequality

$$\begin{aligned} \phi '+\varepsilon \phi \le \psi . \end{aligned}$$

If \(\int _0^1\phi (\tau )+\psi (\tau )\,\mathrm{d}\tau \le m\) for some \(m\ge 0\), then for every \(t>0\) we have the estimate

$$\begin{aligned} \phi (t)\le \frac{1+t}{t}m\mathrm{e}^{-\varepsilon (t-1)}+\int _0^t\mathrm{e}^{-\varepsilon (t-\tau )}\psi (\tau )\,\mathrm{d}\tau . \end{aligned}$$

In particular, if \(\psi \) is summable the last term can be simply replaced by \(\int _0^\infty \psi (\tau )\,\mathrm{d}\tau \).

Proof

Multiplying the differential inequality by \(\tau \) we get

$$\begin{aligned}{}[\tau \phi (\tau )]'\le \phi (\tau )+\psi (\tau ), \end{aligned}$$

and integrating on \((0,t)\) with \(t\le 1\) we readily obtain

$$\begin{aligned} \phi (t) \le \frac{m}{t},\quad \forall t\le 1. \end{aligned}$$

Next, we apply the Gronwall lemma on \((1,t)\) with \(t>1\) to the original inequality. This entails

$$\begin{aligned} \phi (t)\le \phi (1)\mathrm{e}^{-\varepsilon (t-1)}+\int _1^t\mathrm{e}^{-\varepsilon (t-\tau )}\psi (\tau )\,\mathrm{d}\tau ,\quad \forall t>1. \end{aligned}$$

Since \(\phi (1)\le m\), collecting the two formulae we are done. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geredeli, P.G. On the Existence of Regular Global Attractor for \(p\)-Laplacian Evolution Equation. Appl Math Optim 71, 517–532 (2015). https://doi.org/10.1007/s00245-014-9268-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-014-9268-y

Keywords

Mathematics Subject Classification

Navigation