Skip to main content
Log in

Robust Utility Maximization Under Convex Portfolio Constraints

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We study a robust maximization problem from terminal wealth and consumption under a convex constraints on the portfolio. We state the existence and the uniqueness of the consumption–investment strategy by studying the associated quadratic backward stochastic differential equation. We characterize the optimal control by using the duality method and deriving a dynamic maximum principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, E., Hansen, L.P., Sargent, T.: A quartet of semigroups for model specification, robustness, prices of risk and model detection. J. Eur. Econ. Assoc. 1, 68–123 (2003)

    Article  Google Scholar 

  2. Barrieu, P., El Karoui, N.: Pricing, Hedging and Optimally Designing Derivatives via Minimization of Risk Measures. In: Carmona, R. (ed.) ‘Indifference Pricing: Theory and Applications, pp. 77–141. Springer, Paris (2008)

    Google Scholar 

  3. Bordigoni, G., Matoussi, A., Schweizer (2007). A Stochastic control approach to a robust utility maximization problem. F. E. benth et al. (eds.), Stochastic Analysis and applications. Proceedings of the second Abel symposium, Oslo, 2005, Springer, pp. 125–151.

  4. Cvitanic, J., Karatzas, I.: Convex duality in constrained portfolio optimization. Ann. Appl. Prob. 2, 767 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Duffie, D., Skiadas, C.: Continuous-time security pricing: a utility gradient approach. J. Math. Econ. 23, 107–131 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. El Karoui, N., Peng, S., Quenez, M.C.: A Dynamic maximum principle for the optimization of recursive utilities under constraints. Ann. Appl. Prob. 3, 664–693 (2001)

    Google Scholar 

  8. Föllmer, H., Kramkov, D.: Optional decomposition under constraints. Prob. Theory Relat. Fields 109, 1–25 (1997)

    Article  MATH  Google Scholar 

  9. Faidi, W., Matoussi, A., Mnif, M.: Maximization of recursive utilities. A dynamic maximum principle approach. SIAM J. Financ. Math. 2, 1014–1041 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Karatzas, I., Lehoczky, J.P., Shreve, S., Xu, G.L.: Martingale and duality methods for utility maximization in an incomplete market. SIAM J. Control Optim. 29, 702–730 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, 2nd edn. Spinger, Berlin (1991)

    MATH  Google Scholar 

  12. Kramkov, D., Schachermayer, W.: The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Prob. 9, 904–950 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Luenberger, D.: Optimization by vector space methods. Wiley, New York (1969)

    MATH  Google Scholar 

  14. Merton, R.: Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory 3, 373–413 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  15. Pham, H.: Minimizing shortfall risk and applications to finance and insurance problems. Ann. Appl. Prob. 12(1), 143–172 (2002)

    Article  MATH  Google Scholar 

  16. Quenez, M. Q. (2004). Optimal portfolio in a multiple-priors model. in R. Dalang, M. Dozzi and F. Russo (eds;), Seminar on Stochastic Analysis, Random Fields and applications IV, Progess in Probability 58, Birkhauser, pp. 291–321.

  17. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970). Tenth printing version

    MATH  Google Scholar 

  18. Schied, A., Wu, C.T.: Duality theory for optimal investments under model uncertainty. Stat. Decis. 2, 199–217 (2005)

    MathSciNet  Google Scholar 

  19. Skiadas, C.: Robust control and recursive utility. Financ. Stoch. 7, 475–489 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Schroder, M., Skiadas, C.: Optimal consumption and portfolio selection with stochastic differential utility. J. Econ. Theory 89, 68–126 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Schroder, M., Skiadas, C.: Optimal lifetime consumption-portfolio strategies under trading constraints and generalized recursive preferences. Stoch. Process. Appl. 108, 155–202 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are very grateful to Nicole El Karoui for helpful comments and fruitful discussions. Research partly supported by the Chair Financial Risks of the Risk Foundation sponsored by Société Générale, the Chair Derivatives of the Future sponsored by the Fédération Bancaire Française, and the Chair Finance and Sustainable Development sponsored by EDF and Calyon. This work was partially supported by the research project MATPYL of the Fédération de Mathématiques des Pays de la Loire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anis Matoussi.

Appendix

Appendix

1.1 Proof of the Comparison Theorem

Denote by \(\Delta Y_t=Y^1_t- Y_t^2\), \(\Delta U_t=\check{U}^1_t- \check{U}_t^2\) and \(\Delta \bar{U}_T=\bar{U}_T^1- \bar{U}_T^2\). The pair \((\Delta Y, \int (Z^1-Z^2) dW)\) is the solution of the following equation

$$\begin{aligned} d\Delta Y_t&= (\delta _t \Delta Y_t -\alpha \Delta U_t)dt +\frac{1}{2\beta } |Z^1_t|^2 dt -\frac{1}{2\beta } |Z^2_t|^2dt+(Z^1_t-Z^2_t)dW_t\\ \Delta Y_T&= \bar{\alpha }\Delta \bar{U}_T. \end{aligned}$$

which implies for any stopping time \(T\ge \tau \ge t\), we have

$$\begin{aligned} \Delta Y_{\tau }-\Delta Y_{t}&= \int \limits _t^{\tau }(\delta _s \Delta Y_s -\alpha \Delta U_s)ds +\frac{1}{2\beta }\int \limits _t^{\tau } |Z_s^1|^2ds\\&- \frac{1}{2\beta } \int \limits _t^{\tau }|Z_s^2|^2ds+\int \limits _t^{\tau } (Z^1_s-Z^2_s)dW_s. \end{aligned}$$

From the inequality \(\int \limits _0^t |Z_s^1|^2ds-\int \limits _0^t|Z_s^2|^2ds-2\int \limits _0^t<Z_s^1,Z_s^2>ds+2\int \limits _0^t|Z_s^2|^2ds=\int \limits _0^t|Z_s^1-Z_s^2|^2ds\ge 0\), where \(<.,.>\) denotes the inner product associated with the euclidean norm, we deduce that

$$\begin{aligned} \Delta Y_{t} \!&\le \! \Delta Y_{\tau } \!-\!\int \limits _t^{\tau }(\delta _s \Delta Y_s \!-\!\alpha \Delta U_s)ds \!-\!\frac{1}{\beta }\int \limits _t^{\tau } <Z^1_s\!-\!Z^2_s,Z^{2}_s >ds \!-\!\int \limits _t^{\tau } (Z^1_s\!-\!Z^2_s)dW_s. \end{aligned}$$

We define the probability measure \( Q^{*,2}\) equivalent to \( P\) where its density is the \(P\)-martingale \(Z^{*,2}_ T\) with

$$\begin{aligned} Z_T^{*,2}=\mathcal{E}_T\left( -\frac{1}{\beta }\int Z_s^2dW_s\right) . \end{aligned}$$

Since \(\int \limits _0^.(Z_s^1-Z_s^2)dW_s\) is a \(P\)-martingale, then \( \int \limits _0^.(Z_s^1-Z_s^2)dW_s+\frac{1}{\beta } \int \limits _0^.<Z_s^1-Z_s^2,Z_s^2>ds\) is a \( Q^{*,2}\)-local martingale. Let \((T_n)_n\) be a reducing sequence for \(\int \limits _0^.(Z_s^1-Z_s^2)dW_s+\frac{1}{\beta }\int \limits _0^.<Z^1_s-Z^2_s,Z^2>ds\), then, for \(n\) large enough, we have \(T_n\ge t\) and so

$$\begin{aligned}&\int \limits _0^t(Z_s^1-Z_s^2)dW_s +\frac{1}{\beta } \int \limits _0^t<Z^1_s-Z^2_s,Z^2_s>ds \\&\quad = E_{Q^{*,2}}[ \int \limits _0^{\tau \wedge T_n}(Z_s^1-Z_s^2)dW_s +\frac{1}{\beta } \int \limits _0^{\tau \wedge T_n}<Z^1_s-Z^2_s,Z^2_s>ds |\mathcal{F}_t]\,\, \\&\,\text { on } \{T\ge \tau \wedge T_n \ge t\}, \end{aligned}$$

which implies

$$\begin{aligned} \Delta Y_{t}&\le E_{Q^{*,2}}[ \Delta Y_{\tau \wedge T_n } -\int \limits _t^{\tau \wedge T_n }(\delta _s \Delta Y_s -\alpha \Delta U_s)ds |\mathcal{F}_t] \,\, \text { on } \{T\ge \tau \wedge T_n \ge t\}. \end{aligned}$$

Sending \(n\) to infinity, we have \(\tau \wedge T_n\longrightarrow \tau \), \(Q^{*,2}\) a.s. and \( \Delta Y_{\tau \wedge T_n }\longrightarrow \Delta Y_{\tau }\) \(Q^{*,2}\) a.s. Since \(Y^1\) (resp. \(Y^2\)) is in \(D_0^{exp}\) and \( \check{U}^1 \) (resp. \(\check{U}^2\)) is in \(D_1^{exp}\), by the dominated convergence theorem, we have

$$\begin{aligned} \Delta Y_{t}&\le E_{Q^{*,2}}[ \Delta Y_{\tau } -\int \limits _t^{\tau }(\delta _s \Delta Y_s -\alpha \Delta U_s)ds |\mathcal{F}_t] \,\, \text { on } \{T\ge \tau \ge t\}. \end{aligned}$$

From the stochastic Gronwall–Bellman inequality (see Appendix C, Skiadas and Schroder [20]), we have

$$\begin{aligned} \Delta Y_{t}&\le E_{Q^{*,2}}[ \int \limits _t^{T}\alpha e^{-\int \limits _t^s \delta _s ds}\Delta U_s ds + \bar{\alpha }e^{-\int \limits _t^T \delta _s ds} \Delta \bar{U}_T |\mathcal{F}_t]. \end{aligned}$$
(6.1)

From inequalities (2.13)–(2.14), we have \(\Delta Y_{t}\le 0\), \(0\le t\le T\),\( \,\,dt\otimes dP \text { a.s. }\) and the result follows. If \(Y_0^1\!=\!Y_0^2\), then from (6.1), we have \(E_{Q^{*,2}}[ \int \limits _0^{T}\alpha e^{-\int \limits _0^s \delta _s ds}\Delta U_s ds + \bar{\alpha }e^{-\int \limits _0^T \delta _s ds} \Delta \bar{U}_T]=0\), which implies \(\Delta U_t\!=\!0\), \(t\in [0,T]\) and \(\Delta \bar{U}_T=0\). Since the BSDE (2.2)–(2.3) have a unique solution, then \(Y_t^1=Y_t^2\), \(t\in [0,T]\) a.e. For the last point, we argue by contradiction. If \(Y_0^1=Y_0^2\), then \(\Delta U_t=0\), \(t\in [0,T]\) and \(\Delta \bar{U}_T=0\) which contradicts our assumption and so \(Y_0^1<Y_0^2\). \(\Box \)

1.2 Proof of the Continuity Theorem

We only prove the first statement. Since \(U(c^n_t)\ge U(c_t)\), for all \(0\le t\le T \) and \(\bar{U}(\xi ^n)\ge \bar{U}(\xi )\), then from the comparison Theorem 2.1, the sequence \(((Y^{x,c^n,\xi ^n})_{0\le t\le T})_n\) is also non-increasing and so

$$\begin{aligned} Y^{x,c^1,\xi ^1}_t\ge Y^{x,c^n,\xi ^n}_t\ge Y^{x, c,\xi }_t,\,\,\, 0\le t\le T. \end{aligned}$$
(6.2)

We define \((Y^{(\infty )}_t)_{0\le t\le T}\) as follows: \(Y^{(\infty ) }_t=\displaystyle \lim _{n \longrightarrow \infty }Y^{x,c^n,\xi ^n}_t\), \(0\le t\le T\). From the definition of \((Y^{x,c^n,\xi ^n}_t)_{0\le t\le T}\), we have

$$\begin{aligned} Y^{x,c^n,\xi ^n}_t=-\beta \log E_P\left[ \exp (-\frac{1}{\beta }\int \limits _t^T(\alpha U (c^n_s) -\delta _sY^{x,c^n,\xi ^n}_s)ds)-\frac{1}{\beta }\bar{\alpha }\bar{U}(\xi ^n)|\mathcal{F}_t\right] . \end{aligned}$$

From inequality (6.2) and the monotonicity property of the sequences \((\xi ^n)_n\) and \(\Big ((c^n_{t})_{0\le t\le T}\Big )_n\), we have

$$\begin{aligned}&\Big |\exp (-\frac{1}{\beta }\int \limits _t^T(\alpha U(c^n_s)-\delta _s Y^{x,c^n,\xi ^n}_s)ds) -\frac{1}{\beta }\bar{\alpha }\bar{U} (\xi ^n)\Big |\\&\quad \le \exp \left( \frac{1}{\beta }\int \limits _t^T(\alpha | U(c^n_s)|+\delta _s|Y^{x,c^n,\xi ^n}_s|)ds\right) +\frac{\bar{\alpha }}{\beta }|\bar{U} (\xi ^n)|)\\&\quad \le \exp \Big (\frac{\alpha }{\beta }\int \limits _0^T(| U(c^1_s)|\!+\!|U(c_s)|)ds \!+\!\frac{\Vert \delta \Vert _{\infty }T}{\beta }\big (\mathrm {ess}\sup _{0\le t\!\le \! T}|Y^{x,c^1,\xi ^1}_t| \!+\!\mathrm ess \sup _{0\le t\le T}|Y_t^{x,c, \xi }|\big )\\&\quad +\frac{\bar{\alpha }}{\beta }(|\bar{U} (\xi ^1)|+|\bar{U}(\xi )|)\Big ):=g_T. \end{aligned}$$

From Cauchy Schwarz inequality, we have

$$\begin{aligned}&E_P[|g_T|] \le E_P\Big [\exp \Big (\frac{2\alpha }{\beta }\int \limits _0^T(| U(c^1_s)|+|U(c_s)|)ds\Big )\Big ]^{\frac{1}{2}}\nonumber \\&\quad E_P\Big [\exp \Big ( \frac{2\Vert \delta \Vert _{\infty }T}{\beta }\big (\mathrm {ess}\sup _{0\le t\le T}|Y^{x,c^1,\xi ^1}_t| +\mathrm ess \sup _{0\le t\le T}|Y_t^{x,c, \xi }|\big )+\frac{2\bar{\alpha }}{\beta }(|\bar{U} (\xi ^1)|+|\bar{U}(\xi )|)\Big )\Big ]^{\frac{1}{2}}\nonumber \\&\quad \le E_P\Big [\exp \Big (\frac{2\alpha }{\beta }\int \limits _0^T(| U(c^1_s)|+|U(c_s)|)ds\Big )\Big ]^{\frac{1}{2}}\nonumber \\&\quad E_P\Big [\exp \Big ( \frac{4\Vert \delta \Vert _{\infty }T}{\beta }\big (\mathrm {ess}\sup _{0\le t\le T}|Y^{x,c^1,\xi ^1}_t | +\mathrm ess \sup _{0\le t\le T}|Y_t^{x,c, \xi }|\big )\Big )\Big ]^{\frac{1}{4}}\nonumber \\&\quad E_P\Big [\exp \Big (\frac{4\bar{\alpha }}{\beta }(|\bar{U} (\xi ^1)|+|\bar{U}(\xi )|)\Big )\Big ]^{\frac{1}{4}}. \end{aligned}$$
(6.3)

From the boundedness on the discounting factor (H1) and since \((c,\xi )\in \mathcal{A}(x)\), \((c^1,\xi ^1)\in \mathcal{A}(x)\), \(Y^{x,c, \xi }\in D_0^{exp}\) and \(Y^{x,c^1, \xi ^1}\in D_0^{exp}\), we have \(g_T\in L^1(P)\). By the dominated convergence theorem, we have

$$\begin{aligned} Y^{(\infty )}_t=-\beta \log E_P[\exp (-\frac{1}{\beta }\int \limits _t^T(\alpha U(c_s)-\delta _sY_s^{(\infty )})ds) -\frac{1}{\beta }\bar{\alpha }\bar{U}(\xi )|\mathcal{F}_t],\,\,0\le t\le T. \end{aligned}$$

Since there exists a unique solution to the BSDE (2.11)–(2.12), we have necessarily \(Y^{(\infty )}=Y^{x,c,\xi }\) and the result follows.

1.3 Proof of the Maximum Principle

We fix \(\epsilon >0\) and \(\eta >0\) such that \(\epsilon <\eta \).

First step: We prove that

$$\begin{aligned} \bar{\alpha } Z^{*}_TS^T_{\delta }\bar{U}^{'}(\xi ^*)&\le \lambda ^* \tilde{Z}_T \,\,dP \,\,a.s. \end{aligned}$$
(6.4)

We consider the following set

$$\begin{aligned} A_{\epsilon ,\eta } :=\Big \{Z_T^{*} S_{\delta }^T\bar{\alpha } \bar{U}'(\xi ^*)-\lambda ^* \tilde{Z}_T >0, \epsilon < \xi ^* < \eta \Big \}. \end{aligned}$$

We define \(\xi _n\) as follows: \(\xi _n=\xi ^* +\frac{1}{n} \mathbf{1}_{A_{\epsilon ,\eta }} \).

\(\star \) We prove that \((c^*,\xi _n)\in \mathcal{A}\) : From the representation theorem under \(\tilde{P}^*\), there exists a process \(H_n\in \tilde{\mathcal{H}}\) such that

$$\begin{aligned} \frac{1}{n} \mathbf{1}_{A_{\epsilon ,\eta }}&= E_{\tilde{P}^*}[\frac{1}{n} \mathbf{1}_{A_{\epsilon ,\eta }}]+\int \limits _0^T{H_n}_s (diag S_s)^{-1}dS_s, \end{aligned}$$

which implies that

$$\begin{aligned} \xi _n=x+ E_{\tilde{P}^*}[\frac{1}{n} \mathbf{1}_{A_{\epsilon ,\eta }}]+ \int \limits _0^T{H_n^*}_s (diag S_s)^{-1}dS_s-\int \limits _0^Tc_s^*ds, \end{aligned}$$

where \(H_n^*=H^*+H_n\). For n large enough, we have \(0\le \frac{1}{n}\le \frac{\epsilon }{2}\) and so

$$\begin{aligned} {\epsilon }\le \xi _n\le \eta +\frac{\epsilon }{2}\text { on the set }\{ \epsilon <\xi ^*<\eta \}. \end{aligned}$$

From the standard assumptions on the utility functions (H4), we have

$$\begin{aligned} \bar{U}(\epsilon )\le \bar{U}(\xi _n)\le \bar{U}(\eta +\frac{\epsilon }{2}) \text { on the set }\{ \epsilon <\xi ^*<\eta \}. \end{aligned}$$

and so for \(n\) large enough, \(E[\exp {(\gamma |\bar{U}(\xi _n)|)}]\) is finite, which implies that \((c^*,\xi _n)\in \mathcal{A}\).

\(\star \) We prove that \(P(A_{\epsilon ,\eta })=0\) : From the definition of \(J\) (see (4.10)) and the optimality of the strategy \((c^*,\xi ^*)\), we have

$$\begin{aligned} 0&\ge n(J(x,c^*,\xi ^{n} ,\tilde{P}^*, \lambda ^*)-J(x,c^*,\xi ^{*},\tilde{P}^*,\lambda ^*))\\&= n(Y_0^{x,c^*,\xi ^{n}}- Y_0^{x,c^*, \xi ^{*}}) -\lambda ^*E_{\tilde{P}^*}[\mathbf{1}_{A_{\epsilon ,\eta }}]\nonumber \\&\ge nE_{Q^{n}}\Big [ \bar{\alpha }S_T^\delta (\bar{U}(\xi ^{n})-\bar{U}(\xi ^*)) \Big ]-\lambda ^*E_{\tilde{P}^*}[\mathbf{1}_{A_{\epsilon ,\eta }}]\nonumber \\&= nE_{P}\Big [ Z^{Q^{n}}_T\bar{\alpha }S_T^\delta (\bar{U}(\xi ^{n})-\bar{U}(\xi ^*)) \mathbf{1}_{A_{\epsilon ,\eta }}\Big ]-\lambda ^*E_{\tilde{P}^*}[\mathbf{1}_{A_{\epsilon ,\eta }}],\nonumber \end{aligned}$$
(6.5)

where the probability measure \(Q^{n}\) has a density given by the \(P\)-martingale \(Z^{Q^{n}}=(Z_t^{ Q^{n}})_{0\le t\le T}=(\mathcal{E}_t(-\frac{1}{\beta } M^{x,c^*,\xi ^{n}}))_{0\le t\le T}\) and \(M_t^{x,c^*,\xi ^{n}}=\int \limits _0^tZ_s^{x,c^*,\xi ^{n}}dW_s\).

Since there exists \(\theta ^n\) between \(\xi ^{n}\) and \(\xi ^*\) such that \( \bar{U}(\xi ^{n})-\bar{U}(\xi ^*)=\bar{U}^{'}(\theta ^n)(\xi ^{n}-\xi ^*)\), we deduce that

$$\begin{aligned} n (\bar{U}(\xi ^{n})-\bar{U}(\xi ^*))\mathbf{1}_{A_{\epsilon ,\eta }}\longrightarrow \bar{U}^{'}(\xi ^*)\mathbf{1}_{A_{\epsilon ,\eta }} \,\,dP \,\,a.s. \end{aligned}$$
(6.6)

and

$$\begin{aligned} | n(\bar{U}(\xi ^{n})-\bar{U}(\xi ^*))\mathbf{1}_{\{\epsilon <\xi ^*<\eta \}} |\le \bar{U}^{'}(\epsilon )\,\,dP \,\,a.s. \end{aligned}$$
(6.7)

From the definition of \(Z_t^{Q^{n}}\), we have

$$\begin{aligned} Z_t^{Q^{n}}=\exp (-\frac{1}{\beta } M_t^{x,c^*,\xi ^{n}} -\frac{1}{2\beta ^2}<M^{x,c^*,\xi ^{n}}>_t). \end{aligned}$$
(6.8)

From the BSDE (2.11), we obtain

$$\begin{aligned} Y^{x,c^*,\xi ^{n}}_t-Y^{x,c^*,\xi ^{n}}_0&= \int \limits _0^t(\delta _s Y^{x,c^*,\xi ^{n}}_s-\alpha U(c_s^{*}))ds +\frac{1}{2\beta }\langle M^{x,c^*,\xi ^{n}}\rangle _t +M_t^{x,c^*,\xi ^{n}}.\nonumber \\ \end{aligned}$$
(6.9)

Plugging (6.9) into (6.8), we obtain

$$\begin{aligned} Z_t^{Q^{n}}= \exp \Big ( \int \limits _0^t\frac{1}{\beta }(\delta _s Y^{x,c^*,\xi ^{n}}_s-\alpha U(c_s^{*}))ds -\frac{1}{\beta } ( Y^{x,c^*,\xi ^{n}}_t -Y^{x,c^*,\xi ^{n}}_0) \Big ). \end{aligned}$$

From Proposition 2.1 (i), we have

$$\begin{aligned} \displaystyle \lim _{n \longrightarrow \infty } Z_t^{Q^{n}}&= \exp \Big ( \int \limits _0^t\frac{1}{\beta }(\delta _s Y^{x,c^*,\xi ^*}_s-\alpha U(c^{*}_s))ds -\frac{1}{\beta } ( Y^{x,c^*,\xi ^*}_t -Y^{x,c^*,\xi ^*}_0) \Big )\nonumber \\&= Z_t^*\,\,dt\otimes dP \,\,a.s. \end{aligned}$$
(6.10)

Under the boundedness on the discounting factor (H1) and since \((Y^{x,c^*,\xi ^{n}}_t)_{0\le t\le T} \in D_0^{exp}\), we have

$$\begin{aligned} \!|\!Z_t^{Q^{n}}\!|\!\!\le \! \exp \Big (\frac{T}{\beta } ||\delta ||_{\infty }\text {ess}\displaystyle \sup _{0\le t\le T}|Y_t^{x,c^*,\xi ^{n}}| \!+\!\frac{\alpha }{\beta }\int \limits _0^T |U(c^*_s)|ds\!+\!\frac{2}{\beta }\text {ess}\displaystyle \sup _{0\le t\le T}|Y_t^{x,c^*,\xi ^{n}}|\Big ).\nonumber \\ \end{aligned}$$
(6.11)

From Proposition 2.1 (i), we have \(Y_t^{x,c^*,\xi ^{1}}\ge Y_t^{x,c^*,\xi ^{n}}\ge Y_t^{x,c^*, \xi ^*}\) and so

$$\begin{aligned} \text {ess}\displaystyle \sup _{0\le t\le T}|Y_t^{x,c^*,\xi ^{n}}| \le \text {ess}\displaystyle \sup _{0\le t\le T}|Y_t^{x,c^*,\xi ^{1}}| +\text {ess}\displaystyle \sup _{0\le t\le T}|Y_t^{x,c^*, \xi ^*}|. \end{aligned}$$
(6.12)

Using the inequalities (6.7), (6.11) and (6.12), we have

$$\begin{aligned}&| n(\bar{U}(\xi ^{n})-\bar{U}(\xi ^*))\mathbf{1}_{\{\epsilon < \xi ^* < \eta \}} | |Z_t^{Q^{n}}|\\&\quad \le \bar{U}^{'} (\epsilon ) \exp \Big (\frac{T}{\beta } ||\delta ||_{\infty } (\text {ess}\displaystyle \sup _{0\le t\le T}|Y_t^{x,c^*,\xi ^{1}}| +\text {ess}\displaystyle \sup _{0\le t\le T}|Y_t^{x,c^*,\xi ^*}|)\\&\quad +\frac{\alpha }{\beta }\int \limits _0^T |U(c_s^*)|ds+\frac{2}{\beta }(\text {ess}\displaystyle \sup _{0\le t\le T}|Y_t^{x,c^*,\xi ^{1}}| +\text {ess}\displaystyle \sup _{0\le t\le T}|Y_t^{x,c^*,\xi ^*}|)\Big ):=g_{T}. \end{aligned}$$

From Cauchy Schwartz inequality, we have

$$\begin{aligned} E_P[|g_{T}|] \!&\le \! \bar{U}^{'} (\epsilon ) E_P\Big [\!\exp \!\Big (\frac{2\alpha }{\beta }\int \limits _0^T|U(c_s^*)|ds\Big )\Big ]^{\frac{1}{2}}\\&E_P\Big [\exp \Big ( \frac{2(2\!+\!\Vert \delta \Vert _{\infty }T)}{\beta }\big (\mathrm ess \sup _{0\le t\le T}|Y^{x,c^*,\xi ^1}_t| \!+\!\mathrm ess \sup _{0\le t\le T}|Y_t^{x,c^*, \xi ^*}|\big ) \Big )\Big ]^{\frac{1}{2}}\nonumber . \end{aligned}$$
(6.13)

From the boundedness on the discounting factor (H1), and since \((c^*,\xi ^*)\in \mathcal{A}\), \((c^*,\xi ^{1})\in \mathcal{A}\), \(Y^{x,c^*, \xi ^*}\in D_0^{exp}\) and \(Y^{x,c^*, \xi ^{1}}\in D_0^{exp}\), we have \(g_{T}\in L^1(P)\). By the dominated convergence theorem and substituting inequalities (6.6) and (6.10) into (6.5), we have

$$\begin{aligned} 0&\ge \displaystyle \lim _{n\longrightarrow \infty } E_{Q^{n}}\Big [\bar{\alpha } S_T^\delta n(\bar{U}(\xi ^*)-\bar{U}(\xi _n))\mathbf{1}_{\{\epsilon < \xi ^* < \eta \}} \Big ]-\lambda ^*E_{\tilde{P}^*}[\mathbf{1}_{A_{\epsilon ,\eta }}]\\&= E_{Q^{*}} \Big [ \bar{\alpha } S_T^\delta \bar{U}^{'}(\xi ^*)\mathbf{1}_{A_{\epsilon ,\eta }} \Big ]-\lambda ^*E_{\tilde{P}^*}[\mathbf{1}_{A_{\epsilon ,\eta }}]. \end{aligned}$$

which implies \(P(A_{\epsilon ,\eta })=0\) for all \(0<\epsilon <\eta <\infty \). Sending \(\epsilon \longrightarrow 0\) and \(\eta \longrightarrow \infty \), we have \(A_{\epsilon ,\eta } \nearrow \Big \{Z_T^{*} S_{\delta }^T\bar{\alpha } \bar{U}'(\xi ^*)-\lambda ^* \tilde{Z}_T >0 \Big \} \) and so inequality (6.4) is proved.

Second step: We prove that

$$\begin{aligned} \bar{\alpha } Z^{*}_T S_T^\delta U^{'}(\xi ^*)&\ge \lambda ^* \tilde{Z}_T^{*} \,\,dP \,\,a.s. \end{aligned}$$
(6.14)

We consider the following set

$$\begin{aligned} B_{\epsilon ,\eta }:=\Big \{Z_T^{*}\bar{\alpha } S_T^\delta \bar{U}'(\xi ^*)-\lambda ^* \tilde{Z}_T^{*} <0, \epsilon < \xi ^* < \eta \Big \}. \end{aligned}$$

We define \(\xi _n^{'}\) as follows: \(\xi _n^{'}:=\xi ^* -\frac{1}{n}\mathbf{1}_{B_{\epsilon ,\eta }} \).

\(\star \) We prove that \((c^*,\xi _n^{'})\in \mathcal{A}\) : As in the first step, for n large enough, we have \(0\le \frac{1}{n}\le \frac{\epsilon }{2}\) and so

$$\begin{aligned} \frac{\epsilon }{2}\le \xi _n^{'}\le \eta \text { on the set }\{ \epsilon <\xi ^*<\eta \}. \end{aligned}$$

From the standard assumptions on the utility functions (H4), we have

$$\begin{aligned} \bar{U}(\frac{\epsilon }{2})\le \bar{U}(\xi _n^{'})\le \bar{U}(\eta ) \text { on the set }\{ \epsilon <\xi ^*<\eta \}. \end{aligned}$$

This shows that for \(n\) large enough, \(E[\exp {(\gamma |\bar{U}(\xi _n^{'})|)}]\) is finite and so \((c^*,\xi _n^{'})\in \mathcal{A}\).

\(\star \) We prove that \(P(B_{\epsilon ,\eta })=0\) : From the definition of \(J\) (see (4.10)) and the optimality of the strategy \((c^*,\xi ^*)\), we have

$$\begin{aligned} 0&\ge n(J(x,c^*,\xi ^{'n} ,\tilde{P}^*, \lambda ^*)-J(x,c^*,\xi ^{*},\tilde{P}^*,\lambda ^*))\\&= n(Y_0^{x,c^*,\xi ^{'n}}- Y_0^{x,c^*, \xi ^{*}}) +\lambda ^*E_{\tilde{P}^*}[\mathbf{1}_{B_{\epsilon ,\eta }}]\nonumber \\&\ge nE_{Q^{'n}}\Big [ \bar{\alpha }S_T^\delta (\bar{U}(\xi ^{'n})-\bar{U}(\xi ^*)) \Big ]+\lambda ^*E_{\tilde{P}^*}[\mathbf{1}_{B_{\epsilon ,\eta }}]\nonumber \\&= nE_{P}\Big [ Z^{Q^{'n}}_T\bar{\alpha }S_T^\delta (\bar{U}(\xi ^{'n})-\bar{U}(\xi ^*)) \mathbf{1}_{B_{\epsilon ,\eta }}\Big ]+\lambda ^*E_{\tilde{P}^*}[\mathbf{1}_{B_{\epsilon ,\eta }}],\nonumber \end{aligned}$$
(6.15)

where the probability measure \(Q^{'n}\) has a density given by the \(P\)-martingale \(Z^{Q^{'n}}=(Z_t^{ Q^{'n}})_{0\le t\le T}=(\mathcal{E}_t(-\frac{1}{\beta } M^{x,c^*,\xi ^{'n}}))_{0\le t\le T}\) and \(M_t^{x,c^*,\xi ^{'n}}=\int \limits _0^tZ_s^{x,c^*,\xi ^{'n}}dW_s\).

Since there exists \(\theta ^n\) between \(\xi ^{'n}\) and \(\xi ^*\) such that \( \bar{U}(\xi ^{'n})-\bar{U}(\xi ^*)=\bar{U}^{'}(\theta ^n)(\xi ^{'n}-\xi ^*)\), we deduce that

$$\begin{aligned} n (\bar{U}(\xi ^{'n})-\bar{U}(\xi ^*)) \mathbf{1}_{B_{\epsilon ,\eta }}\longrightarrow -\bar{U}^{'}(\xi ^*)\mathbf{1}_{B_{\epsilon ,\eta }} \,\,dP \,\,a.s. \end{aligned}$$
(6.16)

and

$$\begin{aligned} | n(\bar{U}(\xi ^{'n})-\bar{U}(\xi ^*))\mathbf{1}_{\{\epsilon <\xi ^*<\eta \}} |\le \bar{U}^{'}(\epsilon )\,\,dP \,\,a.s. \end{aligned}$$
(6.17)

From the definition of \(Z_t^{Q^{'n}}\), we have

$$\begin{aligned} Z_t^{Q^{'n}}=\exp (-\frac{1}{\beta } M_t^{x,c^*,\xi ^{'n}} -\frac{1}{2\beta ^2}<M^{x,c^*,\xi ^{'n}}>_t). \end{aligned}$$
(6.18)

From the BSDE (2.11), we obtain

$$\begin{aligned} Y^{x,c^*,\xi ^{'n}}_t-Y^{x,c^*,\xi ^{'n}}_0&= \int \limits _0^t(\delta _s Y^{x,c^*,\xi ^{'n}}_s-\alpha U(c_s^{*}))ds +\frac{1}{2\beta }\langle M^{x,c^*,\xi ^{'n}}\rangle _t +M_t^{x,c^*,\xi ^{'n}}.\nonumber \\ \end{aligned}$$
(6.19)

Plugging (6.19) into (6.18), we obtain

$$\begin{aligned} Z_t^{Q^{'n}}= \exp \Big ( \int \limits _0^t\frac{1}{\beta }(\delta _s Y^{x,c^*,\xi ^{'n}}_s-\alpha U(c_s^{*}))ds -\frac{1}{\beta } ( Y^{x,c^*,\xi ^{'n}}_t -Y^{x,c^*,\xi ^{'n}}_0) \Big ). \end{aligned}$$

From Proposition 2.1 (ii), we have

$$\begin{aligned} \displaystyle \lim _{n \longrightarrow \infty } Z_t^{Q^{'n}}&= \exp \Big ( \int \limits _0^t\frac{1}{\beta }(\delta _s Y^{x,c^*,\xi ^*}_s-\alpha U(c^{*}_s))ds -\frac{1}{\beta } ( Y^{x,c^*,\xi ^*}_t -Y^{x,c^*,\xi ^*}_0) \Big )\nonumber \\&= Z_t^*\,\,dt\otimes dP \,\,a.s. \end{aligned}$$
(6.20)

Under the boundedness on the discounting factor (H1) and since \((Y^{x,c^*,\xi ^{'n}}_t)_{0\le t\le T} \in D_0^{exp}\), we have

$$\begin{aligned} |Z_t^{Q^{'n}}|&\le \exp \Big (\frac{T}{\beta } ||\delta ||_{\infty }\text {ess}\displaystyle \sup _{0\le t\le T}|Y_t^{x,c^*,\xi ^{'n}}| +\frac{\alpha }{\beta }\int \limits _0^T |U(c^*_s)|ds\nonumber \\&+\frac{2}{\beta }\text {ess}\displaystyle \sup _{0\le t\le T}|Y_t^{x,c^*,\xi ^{'n}}|\Big ). \end{aligned}$$
(6.21)

From Proposition 2.1 (ii), we have \(Y_t^{x,c^*,\xi ^{'1}}\le Y_t^{x,c^*,\xi ^{'n}}\le Y_t^{x,c^*, \xi ^*}\) and so

$$\begin{aligned} \text {ess}\displaystyle \sup _{0\le t\le T}|Y_t^{x,c^*,\xi ^{'n}}| \le \text {ess}\displaystyle \sup _{0\le t\le T}|Y_t^{x,c^*,\xi ^{'1}}| +\text {ess}\displaystyle \sup _{0\le t\le T}|Y_t^{x,c^*, \xi ^*}|. \end{aligned}$$
(6.22)

Using the inequalities (6.17), (6.21) and (6.22), we have

$$\begin{aligned}&| n(\bar{U}(\xi ^{'n})-\bar{U}(\xi ^*))\mathbf{1}_{\{\epsilon < \xi ^* < \eta \}} | |Z_t^{Q^{'n}}|\\&\quad \le \bar{U}^{'} (\epsilon ) \exp \Big (\frac{T}{\beta } ||\delta ||_{\infty } (\text {ess}\displaystyle \sup _{0\le t\le T}|Y_t^{x,c^*,\xi ^{'1}}| +\text {ess}\displaystyle \sup _{0\le t\le T}|Y_t^{x,c^*,\xi ^*}|)\\&\quad +\frac{\alpha }{\beta }\int \limits _0^T |U(c_s^*)|ds+\frac{2}{\beta }(\text {ess}\displaystyle \sup _{0\le t\le T}|Y_t^{x,c^*,\xi ^{'1}}| \!+\!\text {ess}\displaystyle \sup _{0\le t\le T}|Y_t^{x,c^*,\xi ^*}|)\Big ):=\tilde{g}_{T}. \end{aligned}$$

From Cauchy Schwartz inequality, we have

$$\begin{aligned} E_P[|\tilde{g}_{T}|] \!&\le \! \bar{U}^{'} (\epsilon ) E_P\Big [\exp \Big (\frac{2\alpha }{\beta }\int \limits _0^T|U(c_s^*)|ds\Big )\Big ]^{\frac{1}{2}}\\&E_P\Big [\exp \Big ( \frac{2(2\!+\!\Vert \delta \Vert _{\infty }T)}{\beta }\big (\mathrm ess |Y^{x,c^*,\xi ^{'1}}_t| \!+\!\mathrm ess \sup _{0\le t\le T}|Y_t^{x,c^*, \xi ^*}|\big ) \Big )\Big ]^{\frac{1}{2}}\nonumber . \end{aligned}$$
(6.23)

From the boundedness on the discounting factor (H1), and since \((c^*,\xi ^*)\in \mathcal{A}\), \((c^*,\xi ^{'1})\in \mathcal{A}\), \(Y^{x,c^*, \xi ^*}\in D_0^{exp}\) and \(Y^{x,c^*, \xi ^{'1}}\in D_0^{exp}\), we have \(\tilde{g}_{T}\in L^1(P)\). By the dominated convergence theorem and substituting inequalities (6.16) and (6.20) into (6.15), we have

$$\begin{aligned} 0&\ge \displaystyle \lim _{n\longrightarrow \infty } E_{Q^{'n}}\Big [\bar{\alpha } S_T^\delta n(\bar{U}(\xi ^*)-\bar{U}(\xi _n^{'}))\mathbf{1}_{\{\epsilon < \xi ^* < \eta \}} \Big ] +\lambda ^*E_{\tilde{P}^*}[\mathbf{1}_{B_{\epsilon ,\eta }}]\\&= E_{Q^{*}} \Big [ -\bar{\alpha } S_T^\delta \bar{U}^{'}(\xi ^*)\mathbf{1}_{B_{\epsilon ,\eta }} \Big ]+\lambda ^*E_{\tilde{P}^*}[\mathbf{1}_{B_{\epsilon ,\eta }}]. \end{aligned}$$

which implies \(P(B_{\epsilon ,\eta })=0\) for all \(0<\epsilon <\eta <\infty \). Sending \(\epsilon \longrightarrow 0\) and \(\eta \longrightarrow \infty \), we obtain

$$\begin{aligned} Z_T^{*} S_T^{\delta }\bar{\alpha } \bar{U}'(\xi ^*)\ge \lambda ^* \tilde{Z}_T^{*}\,\,\text { on the set }\{\xi ^* >0\}\,\, dP\,a.s. \end{aligned}$$
(6.24)

Since the utility function satisfies the Inada conditions (Assumption (H4)), we have \(P(\xi ^* =0)=0\) and so \(P(B_{\epsilon ,\eta })=0\) for all \(0<\epsilon <\eta <\infty \).

\(\star \) We prove inequality (6.14): Sending \(\epsilon \longrightarrow 0\) and \(\eta \longrightarrow \infty \) we have \(B_{\epsilon ,\eta } \nearrow \Big \{Z_T^{*} S_{\delta }^T\bar{\alpha } \bar{U}'(\xi ^*)-\lambda ^* \tilde{Z}_T <0 \Big \} \) and so inequality (6.14) is proved.

The result follows from (6.4) and (6.14). The same argument holds for the consumption process. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matoussi, A., Mezghani, H. & Mnif, M. Robust Utility Maximization Under Convex Portfolio Constraints. Appl Math Optim 71, 313–351 (2015). https://doi.org/10.1007/s00245-014-9259-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-014-9259-z

Keywords

Mathematics Subject Classification

Navigation