Skip to main content
Log in

On the Approximate Controllability of Stackelberg–Nash Strategies for Linearized Micropolar Fluids

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We study a Stackelberg strategy subject to the evolutionary linearized micropolar fluids equations, considering a Nash multi-objective equilibrium (non necessarily cooperative) for the “follower players” (as is called in the economy field) and an optimal problem for the leader player with approximate controllability objective. We will obtain the following three main results: the existence and uniqueness of Nash equilibrium and its characterization, the approximate controllability of the linearized micropolar system with respect to the leader control, and the existence and uniqueness of the Stackelberg–Nash problem, where the optimality system for the leader is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abergel, A., Temam, R.: On some control problem in fluid mechanics. Theor. Comput. Fluid. Dyn. 1, 303–325 (1990)

    Article  MATH  Google Scholar 

  2. Araruna, F.D., Chaves-Silva, F.W., Rojas-Medar, M.A.: Exact controllability of Galerkin’s approximations of micropolar fluids. Proc. Amer. Math. Soc. 138, 1361–1370 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Betts, J.: Practical Methods for Optimal Control Using Nonlinear Programming. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  4. Blieger, L.: Real-Time PDE-Constraints Optimization. SIAM, Philadelphia (2007)

    Google Scholar 

  5. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2010)

    Book  Google Scholar 

  6. Calmelet-Eluhu, C., Majumdar, D.R.: Flow of a micropolar fluid through a circular cylinder subject to longitudinal and torsional oscillations. Math. Comput. Modell. 27(8), 69–78 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Díaz, J.I.: On the von Neumann problem and the approximate controllability of Stackelberg–Nash strategies for some environmental problems. Rev. R. Acad. Cien. Serie A 96(3), 343–356 (2002)

    MATH  Google Scholar 

  8. Díaz, J.I., Lions, J.-L.: On the approximate controllability of Stackelberg–Nash strategies. Ocean circulation and pollution control: a mathematical and numerical investigation. Springer, Berlin (2004)

  9. Dupuy, D., Panasenko, G.P., Stavre, R.: Asymptotic methods for micropolar fluids in a tube structure. Math. Models Methods Appl. Sci. 14(5), 735–758 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ekeland, I., Temam, R.: Analyse convexe et problèmes variationnels, Dunod. Gauthier-Villars, Paris (1974)

    Google Scholar 

  11. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  12. Fabre, C., Puel, J.P., Zuazua, E.: Approximate controllability of the semilinear heat equation. Proc. Royal. Soc. Edinburgh 125A, 31–61 (1995)

    Article  MathSciNet  Google Scholar 

  13. Fernández-Cara, E., Guerrero, S.: Local exact controllability of micropolar fluids. J. Math. Fluid. Mech. 9, 419–453 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fernández-Cara, E., Guerrero, S., Imanuvilov, O.Y.: Some controllability results for the \(N\)-dimensional Navier–Stokes and Boussinesq systems with \(N-1\) scalar controls. SIAM J. Control Optim. 45(1), 146–173 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fursikov, A. V.: Optimal control of distributed systems. Theory and applications, Transl. Math. Monogr. American Mathematical Society, Providence, RI, 187, 2000.

  16. Guillén-González, F., Marques-Lopes, F.P., Rojas-Medar, M.A.: On the approximate controllability of Stackelberg–Nash strategies for Stokes equations. Proc. Amer. Math. Soc. 141(5), 1759–1773 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gunzburger, M.D.: Perpespectives in Flow Control and Optimization. SIAM, Philadelphia (2003)

    Google Scholar 

  18. Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1970)

    Google Scholar 

  19. Lions, J.-L.: Contrôle de Pareto de systèmes distribués. Le cas d‘évolution. C. R. Acad. Sci. Paris, série I 302(11), 413–417 (1986)

    MATH  Google Scholar 

  20. Lions, J.-L.: Contrôle de Pareto de systèmes distribués. Le cas stationaire. C.R. Acad. Sc. Paris, série I 302(6), 223–227 (1986)

    MATH  Google Scholar 

  21. Lions, J.-L.: Some remarks on Stalckelberg’s optimization. Math. Models Methods Appl. Sci. 4, 477–487 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lions, J.-L., Zuazua, E.: Exact boundary controllability of Galerkin’s approximations of Navier–Stokes equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci 26(4), 605–621 (1998)

    MathSciNet  MATH  Google Scholar 

  23. Lukaszewicz, G.: Micropolar Fluids, Theory and Applications, Modeling and Simulation in Science, Engineering and Technology. Birkhauser, Boston (1999)

    Google Scholar 

  24. Nash, J.F.: Noncooperative games. Ann. Math. 54, 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pareto, V.: Cours d’économie politique. Rouge, Laussane (1896)

    Google Scholar 

  26. Ramos, A.M., Glowinski, R., Periaux, J.: Pointwise control of the Burgers equation and related Nash equilibria problems: a comptational approach. J. Optim. Theory Appl. 112, 499–516 (2001)

    Article  MathSciNet  Google Scholar 

  27. Ramos, A.M., Glowinski, R., Periaux, J.: Nash equilibria for the multiobjective control of linear partial differential equations. J. Optim. Theory Appl. 112, 457–498 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1969)

    Google Scholar 

  29. Stavre, R.: The control of the pressure for a micropolar fluid, Dedicated to Eugen Soós. Z. Angew. Math. Phys. 53(6), 912–922 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Von Stalckelberg, H.: Marktform und Gleichgewicht. Springer, Berlin (1934)

    Google Scholar 

Download references

Acknowledgments

The authors want to express their gratitude to the anonymous reviewers for their questions and commentaries; they were very helpful in improving this article. F. D. Araruna’s work was partially supported by INCTMat, CAPES, CNPq (Brazil). M. A. Rojas-Medar’s work was partially supported by project Fondecyt (Chile) by Grant 1120260 and Ministerio de Ciencia e Tecnologa (Spain) by Grant MTM2012-32325.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Rojas-Medar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araruna, F.D., de Menezes, S.D.B. & Rojas-Medar, M.A. On the Approximate Controllability of Stackelberg–Nash Strategies for Linearized Micropolar Fluids. Appl Math Optim 70, 373–393 (2014). https://doi.org/10.1007/s00245-014-9240-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-014-9240-x

Keywords

Mathematics Subject Classfication

Navigation