Skip to main content
Log in

Large Deviations and Importance Sampling for Systems of Slow-Fast Motion

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this paper we develop the large deviations principle and a rigorous mathematical framework for asymptotically efficient importance sampling schemes for general, fully dependent systems of stochastic differential equations of slow and fast motion with small noise in the slow component. We assume periodicity with respect to the fast component. Depending on the interaction of the fast scale with the smallness of the noise, we get different behavior. We examine how one range of interaction differs from the other one both for the large deviations and for the importance sampling. We use the large deviations results to identify asymptotically optimal importance sampling schemes in each case. Standard Monte Carlo schemes perform poorly in the small noise limit. In the presence of multiscale aspects one faces additional difficulties and straightforward adaptation of importance sampling schemes for standard small noise diffusions will not produce efficient schemes. It turns out that one has to consider the so called cell problem from the homogenization theory for Hamilton-Jacobi-Bellman equations in order to guarantee asymptotic optimality. We use stochastic control arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvarez, O., Bardi, M.: Viscosity solutions methods for singular perturbations in deterministic and stochastic control. SIAM J. Control Optim. 40(4), 1159–1188 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arisawa, M., Lions, P.-L.: On ergodic stochastic control. Commun. Partial Differ. Equ. 23, 2187–2217 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baldi, P.: Large deviations for diffusions processes with homogenization and applications. Ann. Probab. 19(2), 509–524 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bardi, M., Capuzzo Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton Jacobi Bellman Equations. Birkäuser, Boston (1997)

    Book  MATH  Google Scholar 

  5. Bensoussan, A., Frehhse, J.: On Bellman equations of ergodic control in ℝn. J. Reine Angew. Math. 429, 125–160 (1992)

    MathSciNet  MATH  Google Scholar 

  6. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications, vol. 5. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  7. Borkar, V., Gaitsgory, V.: Averaging of singularly perturbed controlled stochastic differential equations. Appl. Math. Optim. 56(2), 169–209 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boué, M., Dupuis, P.: A variational representation for certain functionals of Brownian motion. Ann. Probab. 26(4), 1641–1659 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Buckdahn, R., Ichihara, N.: Limit theorem for controlled backward SDEs and homogenization of Hamilton-Jacobi-Bellman equations. Appl. Math. Optim. 51, 1–33 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Camilli, F., Marchi, C.: Rates of convergence in periodic homogenization of fully nonlinear uniformly elliptic PDEs. Nonlinearity 22, 1481–1498 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dupuis, P., Ellis, R.S.: A Weak Convergence Approach to the Theory of Large Deviations. Wiley, New York (1997)

    Book  MATH  Google Scholar 

  12. Dupuis, P., Spiliopoulos, K.: Large deviations for multiscale problems via weak convergence methods. Stoch. Process. Appl. 122, 1947–1987 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dupuis, P., Spiliopoulos, K., Wang, H.: Importance sampling for multiscale diffusions. SIAM J. Multiscale Model. Simul. 12(1), 1–27 (2012)

    Article  MathSciNet  Google Scholar 

  14. Dupuis, P., Spiliopoulos, K., Wang, H.: Rare event simulation in rough energy landscapes. In 2011 Winter Simulation Conference

  15. Dupuis, P., Wang, H.: Subsolutions of an Isaacs equation and efficient schemes for importance sampling. Math. Oper. Res. 32(3), 723–757 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eithier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, New York (1986)

    Book  Google Scholar 

  17. Evans, L.: Periodic homogenization of certain fully nonlinear partial differential equations. Proc. R. Soc. Edinb., Sect. A 120, 245–265 (1992)

    Article  MATH  Google Scholar 

  18. Feng, J., Fouque, J.-P., Kumar, R.: Small-time asymptotics for fast mean-reverting stochastic volatility models. Ann. Appl. Probab. 22(4), 1541–1575 (2012)

    Article  MATH  Google Scholar 

  19. Freidlin, M., Sowers, R.: A comparison of homogenization and large deviations, with applications to wavefront propagation. Stoch. Process. Appl. 82(1), 23–52 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gomes D, D., Oberman, A.: Computing the effective Hamiltonian using a variational approach. SIAM J. Control Optim. 43, 792–812 (2004)

    Article  MathSciNet  Google Scholar 

  21. Horie, K., Ishii, H.: Simultaneous effects of homogenization and vanishing viscosity in fully nonlinear elliptic equations. Funkc. Ekvacioj 46(1), 63–88 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kaise, H., Sheu, S.J.: On the structure of solutions of ergodic type Bellman equation related to risk-sensitive control. Ann. Probab. 34(1), 284–320 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kaise, H., Sheu, S.J.: Ergodic type Bellman equations of first order with quadratic Hamiltonian. Appl. Math. Optim. 59(1), 37–73 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kushner, H.J.: Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems. Birkhäuser, Boston (1990)

    Book  MATH  Google Scholar 

  25. Kushner, H.J.: Large deviations for two-time-scale diffusions with delays. Appl. Math. Optim. 62(3), 295–322 (2009)

    Article  MathSciNet  Google Scholar 

  26. Lifson, S., Jackson, J.L.: On the self-diffusion of ions in a polyelectrolyte solution. J. Chem. Phys. 36, 2410–2414 (1962)

    Article  Google Scholar 

  27. Lions, P.-L., Souganidis, P.E.: Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22(5), 667–677 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lipster, R.: Large deviations for two scaled diffusions. Probab. Theory Relat. Fields 106(1), 71–104 (1996)

    Article  Google Scholar 

  29. Mondal, D., Ghosh, P.K., Ray, D.S.: Noise-induced transport in a rough racket potential. J. Chem. Phys. 130, 074703 (2009)

    Article  Google Scholar 

  30. Pardoux, E., Veretennikov, A.Yu.: On Poisson equation and diffusion approximation 2. Ann. Probab. 31(3), 1166–1192 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pavliotis, G.A., Stuart, A.M.: Multiscale Methods: Averaging and Homogenization. Springer, Berlin (2007)

    Google Scholar 

  32. Saven, J.G., Wang, J., Wolynes, P.G.: Kinetics of protein folding: the dynamics of globally connected rough energy landscapes with biases. J. Chem. Phys. 101(12), 11037–11043 (1994)

    Article  Google Scholar 

  33. Veretennikov, A.Yu.: On large deviations in the averaging principle for SDEs with a “full dependence”, correction, arXiv:math/0502098v1 [math.PR] (2005). Initial article in Ann. Probab. 27(1), 284–296 (1999)

  34. Veretennikov, A.Yu.: On large deviations for SDEs with small diffusion and averaging. Stoch. Process. Appl. 89(1), 69–79 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zwanzig, R.: Diffusion in a rough potential. Proc. Natl. Acad. Sci. USA 85, 2029–2030 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge support by the Department of Energy (DE-SCOO02413) during his stay at Brown University and by a start-up fund by Boston University during completion and revision of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Spiliopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spiliopoulos, K. Large Deviations and Importance Sampling for Systems of Slow-Fast Motion. Appl Math Optim 67, 123–161 (2013). https://doi.org/10.1007/s00245-012-9183-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-012-9183-z

Keywords

Navigation