Skip to main content

Advertisement

Log in

Assessment of Sediment Risk in the North End of Tai Lake, China: Integrating Chemical Analysis and Chronic Toxicity Testing with Chironomus dilutus

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Whole life-cycle bioassays with Chironomus dilutus were performed to evaluate sediment toxicity in Tai Lake, a typical freshwater lake in China. Meanwhile, contaminants of concern were analyzed in sediment. The sediments in Tai Lake showed no acute mortality in 10-day testing to C. dilutus. After chronic exposure to the sediments, however, adverse effects—including decreased survival and sublethal impairments of growth, emergence, and fecundity—were observed at most sites in Tai Lake. A variety of contaminants were detected in sediment with the total concentrations in the range of 504–889 ng/g dry weight (dw) for polycyclic aromatic hydrocarbons, 0.56–1.81 ng/g dw for polychlorinated biphenyls, 38.6–87.8 ng/g dw for polybrominated diphenyl ethers, 8.34–14.2 ng/g dw for organochlorine pesticides, 1.27–2.95 ng/g dw for organophosphate pesticides, 0.11–0.21 ng/g dw for pyrethroid pesticides, and 332–609 µg/g dw for metals. Finally, a canonical correlation analysis was applied to link chronic sediment toxicity to the toxic units of individual contaminants. Results suggested that two pesticides (hexachlorocyclohexane and chlorpyrifos) and two metals (chromium and nickel) in sediments from Tai Lake were the potential contributors to the noted toxicity in C. dilutus in the life-cycle toxicity testing. In conclusion, acute bioassays with the benthos were not sensitive enough to assess sediment toxicity in freshwater lakes in China, and it is desirable to integrate chronic toxicity testing with chemical analysis to better understand sediment risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Belden JB, Gilliom RJ, Lydy MJ (2007) How well can we predict the toxicity of pesticide mixtures to aquatic life? Integr Environ Assess Manag 3(3):364–372

    Article  CAS  Google Scholar 

  • Benoit DA, Sibley PK, Juenemann JL, Ankley GT (1997) Chironomus tentans life-cycle test: design and evaluation for use in assessing toxicity of contaminated sediments. Environ Toxicol Chem 16(6):1165–1176

    Article  CAS  Google Scholar 

  • Du J, Pang J, You J (2013) Bioavailability-based chronic toxicity measurements of permethrin to Chironomus dilutus. Environ Toxicol Chem 32(6):1403–1411

    Article  CAS  Google Scholar 

  • Du J, Li Y, Huang ZC, You J (2014) Chronic toxicity thresholds for sediment-associated benzo[a]pyrene in the midge (Chironomus dilutus). Arch Environ Contam Toxicol 66(3):370–378

    Article  CAS  Google Scholar 

  • Duan HT, Ma RH, Xu XF, Kong FX, Zhang SX, Kong WJ et al (2009) Two-decade reconstruction of algal blooms in China’s Lake Taihu. Environ Sci Technol 43(10):3522–3528

    Article  CAS  Google Scholar 

  • Environment Canada (2006) Ecological screening assessment report on polybrominated diphenyl ethers (PBDEs). Environment Canada, Ottawa, ON

    Google Scholar 

  • Fang S, Chen P, Bian J, Zhong W, Zhu L (2012) Levels and toxicity assessment of pyrethroids in the surface sediments of Taihu Lake and Liaohe River. Acta Sci Circ 32(10):2600–2606

    CAS  Google Scholar 

  • Förstner U (2004) Sediments—resource or waste. J Soil Sed 4(1):3

    Article  Google Scholar 

  • Fu J, Hu X, Tao X, Yu H, Zhang X (2013) Risk and toxicity assessments of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake, China. Chemosphere 93(9):1887–1895

    Article  CAS  Google Scholar 

  • Gower AM, Buckland PJ (1978) Water-quality and occurrence of Chironomus riparius meigen (diptera-chironomidae) in a stream receiving sewage effluent. Freshw Biol 8(2):153–164

    Article  CAS  Google Scholar 

  • Hu W, Huang B, Zhao Y, Sun W, Gu Z (2014) Distribution, sources and potential risk of HCH and DDT in soils from a typical alluvial plain of the Yangtze River Delta region, China. Environ Geochem Health 36(3):345–358

    Article  CAS  Google Scholar 

  • Krummel EM, Gregory-Eaves I, Macdonald RW, Kimpe LE, Demers MJ, Smol JP et al (2005) Concentrations and fluxes of salmon-derived polychlorinated biphenyls (PCBs) in lake sediments. Environ Sci Technol 39(18):7020–7026

    Article  Google Scholar 

  • Lei B, Kang J, Wang X, Yu Y, Zhang X, Wen Y et al (2014) The levels of PAHs and aryl hydrocarbon receptor effects in sediments of Taihu Lake, China. Environ Sci Pollut R 21(10):6547–6557

    Article  CAS  Google Scholar 

  • Li H, Sun B, Lydy MJ, You J (2013) Sediment-associated pesticides in an urban stream in Guangzhou, China: implication of a shift in pesticide use patterns. Environ Toxicol Chem 32(5):1040–1047

    Article  CAS  Google Scholar 

  • Li H, Zeng EY, You J (2014a) Mitigating pesticide pollution in China requires law enforcement, farmer training, and technological innovation. Environ Toxicol Chem 33(4):963–971

    Article  CAS  Google Scholar 

  • Li P, Wang Y, Huang W, Yao H, Xue B, Xu Y (2014b) Sixty-year sedimentary record of DDTs, HCHs, CHLs and endosulfan from emerging development gulfs: a case study in the Beibu Gulf, South China Sea. Bull Environ Contam Toxicol 92(1):23–29

    Article  CAS  Google Scholar 

  • Liu J, Drane W, Liu XF, Wu TJ (2009) Examination of the relationships between environmental exposures to volatile organic compounds and biochemical liver tests: application of canonical correlation analysis. Environ Res 109(2):193–199

    Article  CAS  Google Scholar 

  • Lu G, Yang X, Li Z, Zhao H, Wang C (2013) Contamination by metals and pharmaceuticals in northern Taihu Lake (China) and its relation to integrated biomarker response in fish. Ecotoxicology 22(1):50–59

    Article  CAS  Google Scholar 

  • Ma Z, Chen K, Yuan Z, Bi J, Huang L (2013) Ecological risk assessment of heavy metals in surface sediments of six major chinese freshwater lakes. J Environ Qual 42(2):341–350

    Article  Google Scholar 

  • MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39(1):20–31

    Article  CAS  Google Scholar 

  • Mehler WT, Li H, Lydy MJ, You J (2011) Identifying the causes of sediment-associated toxicity in urban waterways of the Pearl River Delta, China. Environ Sci Technol 45(5):1812–1819

    Article  CAS  Google Scholar 

  • Moran PW, Calhoun DL, Nowell LH, Kemble NE, Ingersoll CG, Hladik ML, et al (2011) Contaminants in stream sediments from seven US metropolitan areas: Data summary of a national pilot study. United States Geological Survey Scientific Investigations Report 5092:22

  • Pomés A, Rodríguez-Farré E, Suñol C (1993) Inhibition of t-[35S] butylbicyclophosphorothionate binding by convulsant agents in primary cultures of cerebellar neurons. Dev Brain Res 73(1):85–90

    Article  Google Scholar 

  • Rapaport RA, Urban NR, Capel PD, Baker JE, Looney BB, Eisenreich SJ et al (1985) New DDT inputs to North America: atmospheric deposition. Chemosphere 14(9):1167–1173

    Article  CAS  Google Scholar 

  • Sibley PK, Benoit DA, Ankley GT (1997) The significance of growth in Chironomus tentans sediment toxicity tests: relationship to reproduction and demographic endpoints. Environ Toxicol Chem 16(2):336–345

    Article  CAS  Google Scholar 

  • Sun B, Wang F, Li H, You J (2015) Occurrence and toxicity of sediment-associated contaminants in Guangzhou College City and its adjacent areas: the relationship to urbanization. Arch Environ Contam Toxicol 68(1):124–131

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (1993) Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons. EPA/600/R-93/089, USEPA, Washington, DC

  • United States Environmental Protection Agency (2000) Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. EPA600/R-99/064, USEPA, Washington, DC

  • United States Environmental Protection Agency (2002) Interim reregistration eligibility decision for chlorpyrifos. EPA 738-R-01-007, USEPA, Washington, DC

  • United States Environmental Protection Agency (2003) Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: PAH mixtures. EPA/600/R-02/013, USEPA, Washington, DC

  • United States Environmental Protection Agency (2006) EPA region III BTAG freshwater sediment screening benchmarks. USEPA, Washington

    Google Scholar 

  • Wang C, Lu G, Wang P, Wu H, Qi P, Liang Y (2011) Assessment of environmental pollution of Taihu Lake by combining active biomonitoring and integrated biomarker response. Environ Sci Technol 45(8):3746–3752

    Article  CAS  Google Scholar 

  • Wang X, Xu J, Guo C, Zhang Y (2012a) Distribution and sources of organochlorine pesticides in Taihu lake, China. Bull Environ Contam Toxicol 89(6):1235–1239

    Article  CAS  Google Scholar 

  • Wang JZ, Li HZ, You J (2012b) Distribution and toxicity of current-use insecticides in sediment of a lake receiving waters from areas in transition to urbanization. Environ Pollut 161:128–133

    Article  CAS  Google Scholar 

  • Weston DP, You J, Lydy MJ (2004) Distribution and toxicity of sediment-associated pesticides in agriculture-dominated water bodies of California’s Central Valley. Environ Sci Technol 38(10):2752–2759

    Article  CAS  Google Scholar 

  • Willett KL, Ulrich EM, Hites RA (1998) Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environ Sci Technol 32(15):2197–2207

    Article  CAS  Google Scholar 

  • Xu SF, Jiang X, Dong YY, Sun C, Feng JF, Wang LS et al (2000) Polychlorinated organic compounds in Yangtse River sediments. Chemosphere 41(12):1897–1903

    Article  CAS  Google Scholar 

  • Yu YX, Zhang SH, Huang NB, Li JL, Pang YP et al (2012) Polybrominated diphenyl ethers and polychlorinated biphenyls in freshwater fish from Taihu Lake, China: their levels and the factors that influence biomagnification. Environ Toxicol Chem 31(3):542–549

    Article  CAS  Google Scholar 

  • Zhang Y, Shi GL, Guo CS, Xu J, Tian YZ, Feng YC et al (2012a) Seasonal variations of concentrations, profiles and possible sources of polycyclic aromatic hydrocarbons in sediments from Taihu Lake, China. J Soil Sed 12(6):933–941

    Article  CAS  Google Scholar 

  • Zhang Y, Hu X, Yu T (2012b) Distribution and risk assessment of metals in sediments from Taihu Lake, China using multivariate statistics and multiple tools. Bull Environ Contam Toxicol 89(5):1009–1015

    Article  CAS  Google Scholar 

  • Zhou P, Lin K, Zhou X, Zhang W, Huang K, Liu L et al (2012) Distribution of polybrominated diphenyl ethers in the surface sediments of the Taihu Lake, China. Chemosphere 88(11):1375–1382

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jizhong Wang from Hefei University of Technology in China for assistance in sediment collection. This work was financially supported by the Ministry of Science and Technology of China (Grant No. 2012ZX07503-003) and the National Natural Science Foundation of China (Grants No. 41273120, 41222024, and 41473106). This is contribution no. IS-2075 from Guangzhou Institute of Geochemistry, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing You.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 447 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, H., Ma, P., Li, H. et al. Assessment of Sediment Risk in the North End of Tai Lake, China: Integrating Chemical Analysis and Chronic Toxicity Testing with Chironomus dilutus . Arch Environ Contam Toxicol 69, 461–469 (2015). https://doi.org/10.1007/s00244-015-0162-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-015-0162-7

Keywords

Navigation