Skip to main content

Advertisement

Log in

Environmental Assessment of PAHs in Soils Around the Anhui Coal District, China

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Thirty-three soil samples were collected from the Luling, Liuer, and Zhangji coal mines, in the Huaibei and Huainan areas, Anhui Province, China, in 2007. The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs), identified as priority pollutants by the US Environmental Protection Agency (EPA), were determined by gas chromatography–mass spectrometry (GC–MS). The sum of 16 US EPA PAHs ranged from 0.13 to 3.54 μg/g (dry weight basis) with a mean concentration of 0.84 μg/g. Among the three sampling sites selected around the coal mines, the site at the Luling coal mine revealed maximum concentration of PAHs, whereas minimum concentration was observed at the site at the Zhangji coal mine. In general, low-molecular-weight PAHs were predominant. The gob pile and coal preparation plant are the sources of PAHs pollution in surface soils in the vicinity of coal mines. The crops in rice paddies might adsorb some PAHs and reduce the PAHs content in soils from paddy fields. The vertical distribution of PAHs in two soil profiles indicates that PAHs contamination in soil profiles tends to occur high in the surface soils and markedly decreases with soil depth. For all depths, PAHs showed a similar distribution pattern, which is an indicator of a similar origin. The total B[a]P equivalent concentration (B[a]Peq) was found to be maximum at the Luling area, whereas it was minimum at Liuer zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agarwal T, Khillare PS, Shridhar V, Ray S (2009) Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India. J Hazard Mater 163:1033–1039

    Article  CAS  Google Scholar 

  • Arditsoglou A, Petaloti C, Terzi E, Sofonious M, Samara C (2004) Size distrbution of trace elements and polycyclic aromatic hydrocarbons in fly ashes generated in Greek lignite-fired power plants. Sci Total Environ 323:153–167

    Article  CAS  Google Scholar 

  • Bakker MI, Casado B, Koerselman JW, Tolls J, Kolloffel C (2000) Polycyclic aromatic hydrocarbons in soil and plant samples from the vicinity of an oil refinery. Sci Total Environ 263:91–100

    Article  CAS  Google Scholar 

  • Baran S, Bielinska JE, Oleszczuk P (2004) Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma 118:221–232

    Article  CAS  Google Scholar 

  • Berset JD, Ejem M, Holzer R, Lischer P (1999) Comparison of different drying, extraction and detection techniques for the determination of priority polycyclic aromatic hydrocarbons in background contaminated soil samples. Anal Chim Acta 383:263–275

    Article  CAS  Google Scholar 

  • Bucheli TD, Blum F, Desaules A, Gustafsson O (2004) Polycyclic aromatic hydrocarbons, black carbon, and molecular markers in soils of Switzerland. Chemosphere 56:1061–1076

    Article  CAS  Google Scholar 

  • Edwards NTJ (1983) Polycyclic aromatic hydrocarbons (PAHs) in the terrestrial environment-a review. J Environ Qual 12:427–441

    Article  CAS  Google Scholar 

  • Hao R, Wan HF, Song YT, Jiang H, Peng SL (2007) Polycyclic aromatic hydrocarbons in agricultural soils of the southern subtropics, China. Pedosphere 17:673–680

    Article  CAS  Google Scholar 

  • Hofmann T, Pies C, Yang Y (2007) Elevated polycyclic aromatic hydrocarbons in a river flood plain soil due to mining activities. Water Sci Technol Water Supply 7:69–77

    Article  CAS  Google Scholar 

  • Kakareka SV, Kukharchyk TI (2003) PAH emission from the open burning of agricultural debris. Sci Total Environ 308:257–261

    Article  CAS  Google Scholar 

  • Krauss M, Wilcke W (2003) Polychlorinated naphthalenes in urban soils: analysis, concentrations, and relation to other persistent organic pollutants. Environ Pollut 122:75–89

    Article  CAS  Google Scholar 

  • Krauss M, Wilcke W, Zech W (2000) Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in forest soils: depth distribution as indicator of different fate. Environ Pollut 110:79–88

    Article  CAS  Google Scholar 

  • Liu GJ, Niu ZY, Daniel VN, Xue J, Zheng LG (2008) Polycyclic aromatic hydrocarbons (PAHs) from coal combustion: emissions, analysis and toxicology. Rev Environ Contam Toxicol 192:1–28

    Article  CAS  Google Scholar 

  • Maliszewska KB (1999) Persistent organic contaminants in the environment PAHs as a case study. In: Block JC, Goncharuk VV, Baveye P (eds) Bioavalibility of organic xenobiotics in the environment. Kluwer Academic, Dordrecht, pp 30–37

    Google Scholar 

  • McLachlan MS (1996) Bioaccumulation of hydrophobic chemicals in agricultural food chains. Environ Sci Technol 30:252–259

    Article  CAS  Google Scholar 

  • Menzie CA, Potocki BB, Santodonato J (1992) Exposure to carcinogenic PAHs in the environment. Environ Sci Technol 26:1278–1284

    Google Scholar 

  • Mielke HW, Wang GD, Gonzales CR, Le B, Quach VN, Mielke PW (2001) PAH and metal mixtures in New Orleans soils and sediments. Sci Total Environ 281:217–227

    Article  CAS  Google Scholar 

  • Mielke HW, Wang GD, Gonzales CR, Powell ET, Le B, Quach VN (2004) PAHs and metals in the soils of inner-city and suburban New Orleans, Louisiana, USA. Environ Toxicol Pharm 18:243–247

    Article  CAS  Google Scholar 

  • Nadal M, Schuhmacher M, Domingo JL (2004) Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environ Pollut 132:1–11

    Article  CAS  Google Scholar 

  • Nam JJ, Song BH, Eom KC, Lee SH, Smith A (2003) Distribution of PAHs in agricultural soils in South Korea. Chemosphere 50:1281–1289

    Article  CAS  Google Scholar 

  • Peters CA, Knightes CD, Brown DG (1999) Long-term composition dynamics of PAH-containing NAPLs and implications for risk assessment. Environ Sci Technol 33:4499–4507

    Article  CAS  Google Scholar 

  • Pies C, Hoffmann B, Petrowsky J, Yang Y, Ternes TA, Hofmann T (2008a) Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere 72:1594–1601

    Article  CAS  Google Scholar 

  • Pies C, Ternes T, Hofmann T (2008b) Identifying sources of polycyclic aromatic hydrocarbons (PAHs) in soils: distinguishing point and non-point sources using an extended PAH spectrum and n-alkanes. J Soils Sediments 8:312–322

    Article  CAS  Google Scholar 

  • Qiao M, Wang C, Huang S, Wang Z (2006) Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China. Environ Int 32:28–33

    Article  CAS  Google Scholar 

  • Ravindra K, Sokhi R, Van GR (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmospheric Environ 42:2895–2921

    Article  CAS  Google Scholar 

  • Ray S, Khillare PS, Agarwal T, Shridhar V (2008) Assessment of PAHs in soil around the International Airport in Delhi, India. J Hazard Mater 156:9–16

    Article  CAS  Google Scholar 

  • RC IA (1983) Monographs on the evaluation of the carcinogenic risk of chemicals to humans: polynuclear aromatic hydrocarbons. WHO, Lyon, France

    Google Scholar 

  • Ribes S, Van Drooge B, Dachs J, Gustafsson O, Grimalt JO (2003) Influence of soot carbon on the soil-air partitioning of polycyclic aromatic hydrocarbons. Environ Sci Technol 37:2675–2680

    Article  CAS  Google Scholar 

  • Ruth LA (1998) Energy from municipal solid waste: a comparison with coal combustion technology. Prog Energ Combust 24:545–564

    Article  CAS  Google Scholar 

  • Skrbic B, Miljevic N (2002) An evaluation of residues at an oil refinery site following fires. J Environ Sci Health A 37:1029–1039

    Article  CAS  Google Scholar 

  • Stalikas CD, Chaidou CI, Pilidis GA (1997) Enrichment of PAHs and heavy metals in soils in the vicinity of the lignite-fired power plants of West Macedonia. Sci Total Environ 204:135–146

    Article  CAS  Google Scholar 

  • Stout SA, Emsbo-Mattingly SD (2008) Concentration and character of PAHs and other hydrocarbons in coals of varying rank: implications for environmental studies of soils and sediments containing particulate coal. Org Geochem 39:801–819

    Article  CAS  Google Scholar 

  • Tao S, Cui YH, Xu FL, Li BG, Cao J, Liu WX, Schmitt G, Wang XJ, Shen WR, Qing BP, Sun R (2004) Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin. Sci Total Environ 320:11–24

    Article  CAS  Google Scholar 

  • Trapido M (1999) Polycyclic aromatic hydrocarbons in Estonian soil: contamination and profiles. Environ Pollut 105:67–74

    Article  CAS  Google Scholar 

  • Van Brummelen TC, Verweij RA, Wedzinga SA, Van Gestel CAM (1996) Enrichment of polycyclic aromatic hydrocarbons in forest soil near a blast furnace plant. Chemosphere 32:293–314

    Article  Google Scholar 

  • Wang XJ, Zheng Y, Liu RM, Li BG, Cao J, Tao S (2003) Medium scale spatial structures of polycyclic aromatic hydrocarbons in the topsoil of Tianjin area. J Environ Sci Health B 38:327–335

    Article  CAS  Google Scholar 

  • Wang SL, Chai FH, Zhang YH, Zhang YX, Wang W (2005) Pollution characterization and source identification and apportionment of polycyclic aromatic hydrocarbons in airborne particulates. Res Environ Sci 18:19–22

    CAS  Google Scholar 

  • Wang Z, Chen JW, Qiao XL, Yang P, Tian FL, Huang LP (2007) Distribution and sources of polycyclic aromatic hydrocarbons from urban to rural soils: a case study in Dalian, China. Chemosphere 68:965–971

    Article  CAS  Google Scholar 

  • Weiss P, Riss A, Gschmeidler E, Schentz H (1994) Investigation of heavy metal, PAH, PCB patterns and PCDD/F profiles of soil samples from an industrialized urban area (Linz, Upper Austria) with multivariate statistical methods. Chemosphere 29:2223–2236

    Article  CAS  Google Scholar 

  • WHO (World Health Organization) (1989) Environmental HEALTH CRITERIA for DDT and its derivatives, environmental aspects. World Health Organization, Geneva

    Google Scholar 

  • Wilcke WG (2007) Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil. Geoderma 141:157–166

    Article  CAS  Google Scholar 

  • Wild SR, Jones KC (1995) Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environ Pollut 88:91–108

    Article  CAS  Google Scholar 

  • Willsch H, Radke M (1995) Distribution of polycyclic aromatic compounds in coals of high rank. Polycyclic Aromat Comp 7:231–251

    Article  CAS  Google Scholar 

  • Xue J, Liu GJ, Niu ZY, Chou CL, Qi CC, Zheng LG, Zhang HY (2007) Factors that influence the extraction of polycyclic aromatic hydrocarbons from coal. Energy Fuel 21:881–890

    Article  CAS  Google Scholar 

  • Yang Y, Hofmann T, Pies C, Grathwohl P (2007) Occurrence of coal and coal-derived particle-bound polycyclic aromatic hydrocarbons (PAHs) in a river floodplain soil. Environ Pollut 151:121–129

    Article  CAS  Google Scholar 

  • Yang Y, Ligouis B, Pies C, Achten C, Hofmann T (2008a) Identification of carbonaceous geosorbents for PAHs by organic petrography in river floodplain soils. Chemosphere 71:2158–2167

    Article  CAS  Google Scholar 

  • Yang Y, Hofmann T, Pies C, Grathwohl P (2008b) Occurrence of coal and coal-derived particle-bound polycyclic aromatic hydrocarbons (PAHs) in a river floodplain soil. Environ Pollut 151:121–129

    Article  CAS  Google Scholar 

  • Yu XZ, Gao Y, Wu SC, Zhang HB, Cheng KC, Wong MH (2006) Distribution of polycyclic aromatic hydrocarbons in soils at Guiyu area of China, affected by recycling of electronic waste using primitive technologies. Chemosphere 65:1500–1509

    Article  CAS  Google Scholar 

  • Zhang LZ, Liu YQ, Chen WL (1997) Study of distribution of PAHs in benzene extracting solution of Chinese raw coals. J China Univer Mining Technol 26:32–35

    Google Scholar 

  • Zhang HY, Liu GJ, Xue J, Wang XM (2005) Study of polycyclic aromatic hydrocarbons (PAHs) and its environment impact in coal and coal combusting products. J China Coal Soc 30:97–101

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (40873070), the Anhui Natural Science Excellent Youth Foundation (08040106909), and the National Foundation of Anhui Education (KJ2008A147). We thank the editor and reviewers for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guijian Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R., Liu, G., Chou, CL. et al. Environmental Assessment of PAHs in Soils Around the Anhui Coal District, China. Arch Environ Contam Toxicol 59, 62–70 (2010). https://doi.org/10.1007/s00244-009-9440-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-009-9440-6

Keywords

Navigation