Skip to main content
Log in

Combined Use of Bioindicators and Passive Samplers for the Assessment of River Water Contamination With Metals

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

In autumn 2005, the site-specific variability of cytosolic metal and protein concentrations in gills of European chub from the Sava River could be mostly associated with gill mass variability. In spring 2006, the correlations of metals and proteins with gill mass were mainly nonsignificant, and their site-specific variability could be presumably associated with river water pollution. The spring cytosolic concentrations of Zn, Cu, and Mn did not differ significantly between the sites (medians: 8.37–11.34 μg ml−1, 68.2–86.2 ng ml−1, and 55.9–68.6 ng ml−1, respectively). Increased cytosolic Cd concentrations were obtained at Oborovo and Lukavec Posavski (median: 4.01 ng ml−1)—the sites influenced by pollution sources from two major urban areas—compared with the remaining sampling sites (median: 1.93 ng ml−1). Cytosolic Fe concentrations were almost two times higher at Jasenovac (median: 11.98 μg ml−1) compared with the concentrations at Sava-Zagreb (median: 6.72 μg ml−1). Labile Fe concentrations measured in river water with passive samplers indicated that cytosolic Fe concentrations in the spring possibly reflected water-borne Fe uptake. The spring cytosolic protein concentrations decreased from upstream (Otok Samoborski: 27.2 ± 5.6 mg ml−1) toward the downstream sites (Lukavec Posavski: 14.8 ± 2.8 mg ml−1), possibly because of the influence of organic pollution and water toxicity. The spring period seems to be a more appropriate season for the assessment of the river water pollution if chub gills are used as the target organ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amundsen P-A, Staldvik FJ, Lukin AA, Kashulin NA, Popova OA, Reshetnikov YS (1997) Heavy metal contamination in freshwater fish from the border region between Norway and Russia. Sci Total Environ 201:211–224. doi:10.1016/S0048-9697(97)84058-2

    Article  CAS  Google Scholar 

  • Andres S, Ribeyre F, Tourencq J-N, Boudou A (2000) Interspecific comparison of cadmium and zinc contamination in the organs of four fish species along a polymetallic pollution gradient (Lot River, France). Sci Total Environ 248:11–25. doi:10.1016/S0048-9697(99)00477-5

    Article  CAS  Google Scholar 

  • Audet D, Couture P (2003) Seasonal variations in tissue metabolic capacities of yellow perch (Perca flavescens) from clean and metal-contaminated environments. Can J Fish Aquat Sci 60:269–278. doi:10.1139/f03-020

    Article  CAS  Google Scholar 

  • Bervoets L, Blust R, Verheyen R (2001) Accumulation of metals in the tissues of three spined stickelback (Gasterosteus aculeatus) from natural fresh waters. Ecotoxicol Environ Saf 48:117–127. doi:10.1006/eesa.2000.2010

    Article  CAS  Google Scholar 

  • Bury NR, Walker PA, Glover CN (2003) Nutritive metal uptake in teleost fish. J Exp Biol 206:11–23. doi:10.1242/jeb.00068

    Article  CAS  Google Scholar 

  • Campbell PGC (1995) Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. IUPAC Wiley, New York, NY, pp 45–102

    Google Scholar 

  • Chovanec A, Hofer R, Schiemer F (2003) Fish as bioindicators. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors: principles, concepts and applications. Elsevier, pp 639–676

  • Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59:627–647. doi:10.1007/s00018-002-8454-2

    Article  CAS  Google Scholar 

  • Čalić V, Picer N, Picer M (2006) Levels of polychlorinated biphenyls and chlorinated insecticides in the liver and muscle tissues of the European chub (Leuciscus cephalus) from the Sava River (Croatia). Organohalogen Compd 68:724–727

    Google Scholar 

  • Čalić V, Picer M, Picer N (2007) Organochlorines from the Sava River (Croatia), levels in fish and SPMD uptake. Organohalogen Compd 69:1360–1363

    Google Scholar 

  • Dallinger R, Kautzky H (1985) The importance of contaminated food and uptake of heavy metals by rainbow trout (Salmo gairdneri): a field study. Oecologia 67:82–89. doi:10.1007/BF00378455

    Article  Google Scholar 

  • Dragun Z, Raspor B, Podrug M (2007) The influence of the season and the biotic factors on the cytosolic metal concentrations in the gills of the European chub (Leuciscus cephalus L.). Chemosphere 69:911–919. doi:10.1016/j.chemosphere.2007.05.069

    Article  CAS  Google Scholar 

  • Dragun Z, Raspor B (2008) Copper determination by ETAAS in fish tissue cytosols with minimal sample pretreatment. Atom Spectrosc 29:107–113

    CAS  Google Scholar 

  • Dragun Z, Raspor B, Roje V (2008a) The labile metal concentrations in Sava River water assessed by diffusive gradients in thin films. Chem Spec Bioavailab 20:33–46. doi:10.3184/095422908X299164

    Article  CAS  Google Scholar 

  • Dragun Z, Roje V, Mikac N, Raspor B (2008b) Preliminary assessment of total dissolved trace metal concentrations in Sava River water. Environ Monit Assess. doi:10.1007/s10661-008-0615-9

  • Farkas A, Salánki J, Specziár A (2002) Relation between growth and the heavy metal concentration in organs of bream Abramis brama L. populating Lake Balaton. Arch Environ Contam Toxicol 43:236–243. doi:10.1007/s00244-002-1123-5

    Article  CAS  Google Scholar 

  • Giguère A, Campbell PGC, Hare L, McDonald DG, Rasmussen JB (2004) Influence of lake chemistry and fish age on cadmium, copper, and zinc concentrations in various organs of indigenous yellow perch (Perca flavescens). Can J Fish Aquat Sci 61:1702–1716. doi:10.1139/f04-100

    Article  Google Scholar 

  • Grung M, Lichtenthaler R, Ahel M, Tollefsen K-E, Langford K, Thomas KV (2007) Effects-directed analysis of organic toxicants in wastewater effluent from Zagreb, Croatia. Chemosphere 67:108–120. doi:10.1016/j.chemosphere.2006.09.021

    Article  CAS  Google Scholar 

  • Harrison SE, Klaverkamp JF (1989) Uptake, elimination and tissue distribution of dietary and aqueous cadmium by rainbow trout (Salmo gairdneri Richardson) and lake white fish (Coregonus clupeaformis Mitchell). Environ Toxicol Chem 8:87–97. doi:10.1897/1552-8618(1989)8[87:UEATDO]2.0.CO;2

    Article  CAS  Google Scholar 

  • HRN EN 14011:2005. Fish sampling by electric power. Croatian Standards Institute, Zagreb, Croatia

  • Källqvist T, Milačić R, Smital T, Thomas KV, Vranes S, Tollefsen K-E (2008) Chronic toxicity of the Sava River (SE Europe) sediments and river water to the algae Pseudokirchneriella subcapitata. Water Res 42:2146–2156. doi:10.1016/j.watres.2007.11.026

    Article  CAS  Google Scholar 

  • Köck G, Triendl M, Hofer R (1996) Seasonal patterns of metal accumulation in Arctic char (Salvelinus alpinus) from an oligotrophic Alpine lake related to temperature. Can J Fish Aquat Sci 53:780–786. doi:10.1139/cjfas-53-4-780

    Article  Google Scholar 

  • Kotze P, du Preez HH, van Vuren JHJ (1999) Bioaccumulation of copper and zinc in Oreochromis mossambicus and Clarias gariepinus, from the Olifants River, Mpumalanga, South Africa. Water SA 25:99–110

    CAS  Google Scholar 

  • Kraemer LD, Campbell PGC, Hare L (2005) Dynamics of Cd, Cu and Zn accumulation in organs and sub-cellular fractions in field transplanted juvenile yellow perch (Perca flavescens). Environ Pollut 138:324–337. doi:10.1016/j.envpol.2005.03.006

    Article  CAS  Google Scholar 

  • Krča S, Žaja R, Čalić V, Terzić S, Grubešić MS, Ahel M et al (2007) Hepatic biomarker responses to organic contaminants in feral chub (Leuciscus cephalus)—Laboratory characterization and field study in the Sava River, Croatia. Environ Toxicol Chem 26:2620–2633. doi:10.1897/07-227.1

    Article  Google Scholar 

  • Lambert Y, Dutil J-D (1997) Can simple condition indices be used to monitor and quantify seasonal changes in the energy reserves of Atlantic cod (Gadus morhua)? Can J Fish Aquat Sci 54(Suppl. 1):104–112. doi:10.1139/cjfas-54-S1-104

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin Phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • McCoy CP, O’Hara TM, Bennett LW, Boyle CR, Lynn BC (1995) Liver and kidney concentrations of zinc, copper and cadmium in channel catfish (Ictalurus punctatus): variations due to size, season and health status. Vet Hum Toxicol 37:11–15

    CAS  Google Scholar 

  • Neely WB (1979) Estimating rate constant for the uptake and clearance of chemicals by fish. Environ Sci Technol 13:1506–1510. doi:10.1021/es60160a004

    Article  CAS  Google Scholar 

  • Olson KR, Squibb K, Crusin RJ (1978) Tissue uptake, cellular distribution, and metabolism of 14CH3HgCl and CH 2033 HgCl by rainbow trout, Salmo gairdneri. J Fish Res Board Can 35:381–390

    CAS  Google Scholar 

  • Olsson P-E, Kling P, Hogstrand C (1998) Mechanisms of heavy metal accumulation and toxicity in fish. In: Langston WJ, Bebianno MJ (eds) Metal metabolism in the aquatic environment. Chapman and Hall, London, UK, pp 321–350

    Google Scholar 

  • Podrug M, Raspor B (2008) Seasonal variation of the metal (Zn, Fe, Mn) and metallothionein concentrations in the liver cytosol of the European chub (Squalius cephalus L.). Environ Monit Assess. doi:10.1007/s10661-008-0509-x

  • Roch M, McCarter JA, Matheson AT, Clark MJR, Olafson RW (1982) Hepatic metallothionein in rainbow trout (Salmo gairdneri) as an indicator of metal pollution in the Campbell river system. Can J Fish Aquat Sci 39:1596–1601

    Article  CAS  Google Scholar 

  • Roméo M, Siaub Y, Sidoumou Z, Gnassia-Barelli M (1999) Heavy metal distribution in different fish species from the Mauritania coast. Sci Total Environ 232:169–175. doi:10.1016/S0048-9697(99)00099-6

    Article  Google Scholar 

  • Standard Operational Procedure (1999) Preparation of S50-fraction from fish tissue (unapproved rev. 01). 1st Workshop in the frame of BEQUALM programme, NIVA, Oslo, September 13–14 1999

  • Sorensen EMB (1991) Metal poisoning in fish. CRC Press, Boca Raton, FL

    Google Scholar 

  • Wallace WG, Brouwer TMH, Lopez GR (2000) Alterations in prey capture and induction of metallothioneins in grass shrimp fed cadmium-contaminated prey. Environ Toxicol Chem 19:962–971. doi:10.1897/1551-5028(2000)019<0962:AIPCAI>2.3.CO;2

    Google Scholar 

  • Wallace WG, Luoma SN (2003) Subcellular compartmentalization of Cd and Zn in two bivalves. II. Significance of trophically available metal (TAM). Mar Ecol Prog Ser 257:125–137. doi:10.3354/meps257125

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support by the Ministry of Science, Education, and Sport of the Republic of Croatia (Project No. 098-0982934-2721) is acknowledged. This study was carried out as a part of the European FP6 Project Sava River Basin [SARIB]: Sustainable Use, Management, and Protection of Resources (INCO-CT-2004-509160). The authors express thanks to all SARIB project participants for the help with fish sampling and dissection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zrinka Dragun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dragun, Z., Podrug, M. & Raspor, B. Combined Use of Bioindicators and Passive Samplers for the Assessment of River Water Contamination With Metals. Arch Environ Contam Toxicol 57, 211–220 (2009). https://doi.org/10.1007/s00244-008-9264-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-008-9264-9

Keywords

Navigation