Skip to main content
Log in

Physicochemical mechanisms of stone formation

  • Invited Review
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

In this article, the term “physicochemical mechanism” is defined as a sequential series of steps culminating in the formation of a renal stone. Distinctions are drawn between physicochemical prerequisites for urinary supersaturation, crystallization, and stone formation. In particular, attention is focussed on the transition from crystal to stone. Emphasis is laid on crystal retention being the fundamental mechanism by which stones are formed, and mention is made of the different ways in which it can be achieved. The processes which dictate crystal-size enlargement, either during free particle flow or during fixed particle entrapment, are described. Modulators of these processes are classified in terms of their mode of action on particular steps in the mechanism rather than on their molecular weight or size. Three different approaches for describing stone formation mechanisms are summarized. These involve mathematical models, qualitative step-by-step pathways, and qualitative non-schematic descriptions. It is suggested that although physicochemical mechanisms are crucially involved in stone formation, they do so in concert with numerous other mechanistic processes, all of which are dictated by their own specific conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Bru:

Brushite

CaP:

Calcium phosphate

CaOx:

Calcium oxalate

CF:

Crystal formation

Cit:

Citrate

GAGs:

Glycosaminoglycans

Ox:

Oxalate

Phy:

Phytate

SF:

Stone formation

UMM:

Urinary macromolecules

References

  1. Finlayson B (1977) Calcium stones: some physical and clinical aspects. In: David DS (ed) Calcium metabolism in renal failure and nephrolithiasis. Wiley, New York, pp 337–382

    Google Scholar 

  2. Finlayson B (1978) Physicochemical aspects of urolithiasis. Kidney Int 13(5):344–360

    Article  CAS  PubMed  Google Scholar 

  3. Finlayson B, Reid F (1978) The expectation of free and fixed particles in urinary stone disease. Invest Urol 15(6):442–448

    CAS  PubMed  Google Scholar 

  4. Blomen LJ, Bijvoet OL (1983) Physicochemical considerations in relation to urinary stone formation. World J Urol 1(3):119–125

    Article  Google Scholar 

  5. Nancollas GH (1983) Crystallization theory relating to urinary stone formation. World J Urol 1(3):131–137

    Article  Google Scholar 

  6. Kok DJ, Papapoulos SE (1993) Physicochemical considerations in the development and prevention of calcium oxalate urolithiasis. Bone and Mineral 20(1):1–5

    Article  CAS  PubMed  Google Scholar 

  7. Kok DJ, Khan SR (1994) Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 46(3):847–854

    Article  CAS  PubMed  Google Scholar 

  8. Hess B, Kok DJ (1996) Nucleation, growth and aggregation of stone-forming crystals. In: Coe FL, Favus MJ, Pak CYC, Parks JH, Preminger GM (eds) Kidney stones: medical and surgical management. Lippincott-Raven, Philadelphia, pp 3–32

    Google Scholar 

  9. Grases F, Costa-Bauzá A, Königsberger E, Königsberger LC (2000) Kinetic versus thermodynamic factors in calcium renal lithiasis. Int Urol Nephrol 32(1):19–27

    Article  CAS  PubMed  Google Scholar 

  10. Kavanagh JP (2010) Physicochemical aspects of uro-crystallization and stone formation. In: Preminger GM, Kavanagh JP (eds) Rao NP. Urinary tract stone disease Springer, London, pp 17–30

    Google Scholar 

  11. Bazin D, Daudon M, Combes C, Rey C (2012) Characterization and some physicochemical aspects of pathological microcalcifications. Chem Rev 112(10):5092–6120

    Article  CAS  PubMed  Google Scholar 

  12. Baumann JM, Affolter B (2014) From crystalluria to kidney stones, some physicochemical aspects of calcium nephrolithiasis. World J Nephrol 3(4):256–267

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nordin BE, Robertson WG (1966) Calcium phosphate and oxalate ion-products in normal and stone-forming urines. Br Med J 1:450–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Robertson WG, Peacock M, Nordin BE (1968) Activity products in stone-forming and non-stone-forming urine. Clin Sci 34:579–594

    CAS  PubMed  Google Scholar 

  15. Robertson WG, Peacock M, Heyburn PJ, Marshall DH, Clark PB (1978) Risk factors in calcium stone disease of the urinary tract. Br J Urol 50(7):449–454

    Article  CAS  PubMed  Google Scholar 

  16. Kavanagh JP (2006) Supersaturation and renal precipitation: the key to stone formation? Urol Res 34(2):81–85

    Article  PubMed  Google Scholar 

  17. Rodgers AL (2014) Urinary saturation: casual or causal risk factor in urolithiasis? BJU Int 114(1):104–110

    Article  PubMed  Google Scholar 

  18. Kok DJ, Papapoulos SE, Bijvoet OL (1986) Excessive crystal agglomeration with low citrate excretion in recurrent stone-formers. Lancet 327(8489):1056–1058

    Article  Google Scholar 

  19. Kok DJ, Papapoulos SE, Blomen LJ, Bijvoet OL (1988) Modulation of Calcium-Oxalate Monohydrate crystallization kinetics in vitro. Kidney Int 34:346–350

    Article  CAS  PubMed  Google Scholar 

  20. Kok DJ, Papapoulos SE, Bijvoet OL (1990) Crystal agglomeration is a major element in calcium oxalate urinary stone formation. Kidney Int 37(1):51–56

    Article  CAS  PubMed  Google Scholar 

  21. Rodgers AL, Webber D, Hibberd B (2015) Experimental determination of multiple thermodynamic and kinetic risk factors for nephrolithiasis in the urine of healthy controls and calcium oxalate stone formers: does a universal discriminator exist? Urolithiasis 43(6):479–487

    Article  CAS  PubMed  Google Scholar 

  22. Fleisch H (1978) Inhibitors and promoters of stone formation. Kidney Int 13(5):361–371

    Article  CAS  PubMed  Google Scholar 

  23. Fleisch H (1979) Mechanisms of stone formation: role of promoters and inhibitors. Scand J Urol Nephrol 53(Suppl):53–66

    Google Scholar 

  24. Worcester EM (1994) Urinary calcium oxalate crystal growth inhibitors. J Am Soc Nephrol 5(5):S46–S53

    CAS  PubMed  Google Scholar 

  25. Marangella M, Vitale C, Petrarulo M, Bagnis C, Bruno M, Ramello A (1999) Renal stones: from metabolic to physicochemical abnormalities. How useful are inhibitors? J Nephrol 13:S51–S60

    Google Scholar 

  26. Khan SR, Kok DJ (2004) Modulators of urinary stone formation. Front Biosci 9(629):1450–1482

    Article  CAS  PubMed  Google Scholar 

  27. Marangella M, Bagnis C, Bruno M, Vitale C, Petrarulo M, Ramello A (2004) Crystallization inhibitors in the pathophysiology and treatment of nephrolithiasis. Urologia Int 72(Suppl 1):6–10

    Article  CAS  Google Scholar 

  28. Ryall RL (2010) The possible roles of inhibitors, promoters, and macromolecules in the formation of calcium kidney stones. In: Preminger GM, Kavanagh JP (eds) Rao NP. Urinary tract stone disease Springer, London, pp 31–60

    Google Scholar 

  29. Robertson WG, Peacock M, Nordin BE (1969) Calcium crystalluria in recurrent renal-stone formers. The Lancet 294(7610):21–24

    Article  Google Scholar 

  30. Robertson WG (1969) Measurement of ionized calcium in biological fluids. Clin Chim Acta 24(1):149–157

    Article  CAS  PubMed  Google Scholar 

  31. Coe FL, Evan AP, Worcester EM, Lingeman JE (2010) Three pathways for human kidney stone formation. Urol Res 38(3):147–160

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rodgers A, Allie-Hamdulay S, Jackson G (2006) Therapeutic action of citrate in urolithiasis explained by chemical speciation: increase in pH is the determinant factor. Nephrol Dial Trans 21(2):361–369

    Article  CAS  Google Scholar 

  33. Zhou JR, Erdman JW Jr (1995) Phytic acid in health and disease. Crit Rev Food Sci Nutr 35(6):495–508

    Article  CAS  PubMed  Google Scholar 

  34. Schwille PO, Schmiedl A, Herrmann U, Fan J, Gottlieb D, Manoharan M, Wipplinger J (1999) Magnesium, citrate, magnesium citrate and magnesium-alkali citrate as modulators of calcium oxalate crystallization in urine: observations in patients with recurrent idiopathic calcium urolithiasis. Urol Res 27(2):117–126

    Article  CAS  PubMed  Google Scholar 

  35. Rodgers A, Allie-Hamdulay S, Jackson G, Durbach I (2013) Theoretical modeling of the urinary supersaturation of calcium salts in healthy individuals and kidney stone patients: precursors, speciation and therapeutic protocols for decreasing its value. J Cryst Growth 382:67–74

    Article  CAS  Google Scholar 

  36. Werness PG, Brown CM, Smith LH, Finlayson B (1985) EQUIL2: a BASIC computer program for the calculation of urinary saturation. J Urol 134(6):1242–1244

    CAS  PubMed  Google Scholar 

  37. Yoshioka T, Koide T, Utsunomiya M, Itatani H, Oka T, Sonoda T (1989) Possible role of Tamm-Horsfall glycoprotein in calcium oxalate crystallization. Br J Urol 64:463–467

    Article  CAS  PubMed  Google Scholar 

  38. Hess B (1992) Tamm-Horsfall glycoprotein—inhibitor or promoter of calcium oxalate monohydrate crystallization processes? Urol Res 20:83–86

    Article  CAS  PubMed  Google Scholar 

  39. Wiessner JH, Hung LY, Mandel NS (2003) Crystal attachment to injured renal collecting duct cells: influence of urine proteins and pH. Kidney Int 63(4):1313–1320

    Article  PubMed  Google Scholar 

  40. Lieske JC, Leonard RE, Toback FG (1995) Adhesion of calcium oxalate monohydrate crystals to renal epithelial cells is inhibited by specific anions. Am J Physiol Renal Physiol 268(4):F604–F612

    CAS  Google Scholar 

  41. Grover PK, Thurgood LA, Wang T, Ryall RL (2010) The effects of intracrystalline and surface-bound proteins on the attachment of calcium oxalate monohydrate crystals to renal cells in undiluted human urine. BJU Int 105(5):708–715

    Article  CAS  PubMed  Google Scholar 

  42. Tsujihata M (2008) Mechanism of calcium oxalate renal stone formation and renal tubular cell injury. Int J Urol 15(2):115–120

    Article  CAS  PubMed  Google Scholar 

  43. Tiselius HG (2011) A hypothesis of calcium stone formation: an interpretation of stone research during the past decades. Urol Res 39(4):231–243

    Article  PubMed  Google Scholar 

  44. Aggarwal KP, Narula S, Kakkar M, Tandon C (2013) Nephrolithiasis: molecular mechanism of renal stone formation and the critical role played by modulators. Biomed Res Int 292953:1–21

    Article  Google Scholar 

  45. Evan AP, Worcester EM, Coe FL, Williams J Jr, Lingeman JE (2015) Mechanisms of human kidney stone formation. Urolithiasis 43(1):19–32

    Article  PubMed  Google Scholar 

  46. Ratkalkar VN, Kleinman JG (2011) Mechanisms of stone formation. Clin Rev Bone Miner Metab 9(3–4):187–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the South African National Research Foundation, the South African Medical research Council, and the University of Cape Town for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen L. Rodgers.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodgers, A.L. Physicochemical mechanisms of stone formation. Urolithiasis 45, 27–32 (2017). https://doi.org/10.1007/s00240-016-0942-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-016-0942-1

Keywords

Navigation