Skip to main content
Log in

Urinary MCP-1、HMGB1 increased in calcium nephrolithiasis patients and the influence of hypercalciuria on the production of the two cytokines

  • Original Paper
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

The study aims to observe the urinary excretion of monocyte chemoattractant-1 (MCP-1) and high-mobility group box 1 (HMGB1) in patients with calcium nephrolithiasis and to determine the influence of hypercalciuria on the production of the two cytokines. 81 cases of patients with calcium nephrolithiasis (group CN) and 30 healthy controls (group C) were involved in this study. To observe the influence of urinary calcium on the excretion of those cytokines, the patients were subdivided according to their 24-h urinary calcium level: ≥4 mg/kg/day (group H) and <4 mg/kg/day (group N). MCP-1 and HMGB1 in urina sanguinis were determined for all subjects. In addition, in vitro study was done to determine the production of the two cytokines and index of apoptosis and oxidative injuries in human kidney epithelial cells (HK-2) exposed to three high levels of calcium. Data showed that both urinary MCP-1 and HMGB1 in group CN were higher than that of group C. When the patients were subdivided, comparisons among the three groups showed that both MCP-1 and HMGB1 in group H and group N were higher than group C, but there was no significant statistical difference between the two stone groups. In vitro study, the apoptosis rate of cells, the lactate dehydrogenase activities, the hydrogen peroxide, and 8-isoprostane concentrations in the medium all increased in accordance with the increased concentration of calcium supplemented. Compared with the control, mRNA expressions of MCP-1 and HMGB1 in cells and the protein concentrations of the two cytokines in the medium of calcium-supplemented groups increased significantly. Results showed that urinary MCP-1 and HMGB1 increased in calcium nephrolithiasis patients and hypercalciuria might affect the identical pathways (through the reactive oxygen species) with other factors in stimulating the production of MCP-1 and HMGB1 in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Daudon M, Donsimoni R, Hennequin C, Fellahi S, Le Moel G, Paris M, Troupel S, Lacour B (1995) Sex- and age-related composition of 10617 calculi analyzed by infrared spectroscopy. Urol Res 23:319–326

    Article  CAS  PubMed  Google Scholar 

  2. Hess B, Hasler-Strub U, Ackermann D, Jaeger P (1997) Metabolic evaluation of patients with recurrent idiopathic calcium nephrolithiasis. Nephrol Dial Transplant 12:1362–1368

    Article  CAS  PubMed  Google Scholar 

  3. Spivacow FR, Negri AL, del Valle EE, Calvino I, Zanchetta JR (2010) Clinical and metabolic risk factor evaluation in young adults with kidney stones. Int Urol Nephrol 42:471–475

    Article  PubMed  Google Scholar 

  4. Yagisawa T, Chandhoke PS, Fan J (1999) Comparison of comprehensive and limited metabolic evaluations in the treatment of patients with recurrent calcium urolithiasis. J Urol 161:1449–1452

    Article  CAS  PubMed  Google Scholar 

  5. Daudon M, Hennequin C, Boujelben G, Lacour B, Jungers P (2005) Serial crystalluria determination and the risk of recurrence in calcium stone formers. Kidney Int 67:1934–1943

    Article  PubMed  Google Scholar 

  6. Fink HA, Wilt TJ, Eidman KE, Garimella PS, MacDonald R, Rutks IR, Brasure M, Kane RL, Ouellette J, Monga M (2013) Medical management to prevent recurrent nephrolithiasis in adults: a systematic review for an American College of Physicians Clinical Guideline. Ann Intern Med 158:535–543

    Article  PubMed  Google Scholar 

  7. Miller NL, Gillen DL, Williams JC Jr, Evan AP, Bledsoe SB, Coe FL, Worcester EM, Matlaga BR, Munch LC, Lingeman JE (2009) A formal test of the hypothesis that idiopathic calcium oxalate stones grow on Randall’s plaque. BJU Int 103:966–971

    Article  CAS  PubMed  Google Scholar 

  8. Kim SC, Coe FL, Tinmouth WW, Kuo RL, Paterson RF, Parks JH, Munch LC, Evan AP, Lingeman JE (2005) Stone formation is proportional to papillary surface coverage by Randall’s plaque. J Urol 173(1):117–119 (discussion 119)

    Article  CAS  PubMed  Google Scholar 

  9. Low RK, Stoller ML (1997) Endoscopic mapping of renal papillae for Randall’splaques in patients with urinary stone disease. J Urol 158(6):2062–2064

    Article  CAS  PubMed  Google Scholar 

  10. Kuo RL, Lingenan JE, Evan AP, Paterson RF, Parks JH, Bledsoe SB, Munch LC, Coe FL (2003) Urine calcium and volume predict coverage of renal papilla by Randall’s plaque. Kidney Int 64(6):2150–2154

    Article  PubMed  Google Scholar 

  11. Khan SR (2006) Renal tubular damage/dysfunction: key to the formation of kidney stones. Urol Res 34:86–91

    Article  PubMed  Google Scholar 

  12. Tsujihata M (2008) Mechanism of calcium oxalate renal stone formation and renal tubular cell injury. Int J Urol 15:115–120

    Article  CAS  PubMed  Google Scholar 

  13. Khaskhali MH, Byer KJ, Khan SR (2009) The effect of calcium on calcium oxalate monohydrate crystal-induced renal epithelial injury. Urol Res 37:1–6

    Article  CAS  PubMed  Google Scholar 

  14. Khan SR (2004) Role of renal epithelial cells in the initiation of calcium oxalate stones. Nephron Exp Nephrol 98:e55–e60

    Article  CAS  PubMed  Google Scholar 

  15. Thamilselvan S, Byer KJ, Hackett RL, Khan SR (2000) Free radical scavengers, catalase and superoxide dismutase provide protection from oxalate-associated injury to LLC-PK1 and MDCK cells. J Urol 164:230–236

    Article  Google Scholar 

  16. Khan SR (2004) Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies. Clin Exp Nephrol 8:75–88

    Article  CAS  PubMed  Google Scholar 

  17. Umekawa T, Byer K, Uemura H, Khan SR (2005) Diphenyleneiodium (DPI) reduces oxalate ion- and calcium oxalate monohydrate and brushite crystal-induced upregulation of MCP-1 in NRK 52E cells. Nephrol Dial Transplant 20:870–878

    Article  CAS  PubMed  Google Scholar 

  18. Thamilselvan S, Khan SR, Menon M (2003) Oxalate and calcium oxalate mediated free radical toxicity in renal epithelial cells: effect of antioxidants. Urol Res 31:3–9

    CAS  PubMed  Google Scholar 

  19. Aihara K, Byer KJ, Khan SR (2003) Calcium phosphate-induced renal epithelial injury and stone formation: involvement of reactive oxygen species. Kidney Int 64:1283–1291

    Article  CAS  PubMed  Google Scholar 

  20. Gáspár S, Niculiţe C, Cucu D, Marcu I (2010) Effect of calcium oxalate on renal cells as revealed by real-time measurement of extracellular oxidative burst. Biosens Bioelectron 25:1729–1734

    Article  PubMed  Google Scholar 

  21. Baggio B, Gambaro G, Ossi E, Favaro S, Borsatti A (1983) Increased urinary excretion of renal enzymes in idiopathic calcium oxalate nephrolithiasis. J Urol 129:1161–1162

    CAS  PubMed  Google Scholar 

  22. Thamilselvan S, Hackett RL, Khan SR (1997) Lipid peroxidation in ethylene glycol induced hyperoxaluria and calcium oxalate nephrolithiasis. J Urol 157:1059–1063

    Article  CAS  PubMed  Google Scholar 

  23. Khan SR (2005) Hyperoxaluria-induced oxidative stress and antioxidants for renal protection. Urol Res 33:349–357

    Article  CAS  PubMed  Google Scholar 

  24. Li CY, Deng YL, Sun BH (2009) Taurine protected kidney from oxidative injury through mitochondrial-linked pathway in a rat model of nephrolithiasis. Urol Res 37:211–220

    Article  CAS  PubMed  Google Scholar 

  25. Schwille PO, Manoharan M, Schmiedl A (2005) Is idiopathic recurrent calcium urolithiasis in males a cellular disease? Laboratory findings in plasma, urine and erythrocytes, emphasizing the absence and presence of stones, oxidative and mineral metabolism: an observational study. Clin Chem Lab Med 43:590–600

    Article  CAS  PubMed  Google Scholar 

  26. Itoh Y, Yasui T, Okada A, Tozawa K, Hayashi Y, Kohri K (2005) Preventive effects of green tea on renal stone formation and the role of oxidative stress in nephrolithiasis. J Urol 173:271–275

    Article  PubMed  Google Scholar 

  27. Khan SR (2014) Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis. Transl Androl Urol 3(3):256–276

    PubMed  PubMed Central  Google Scholar 

  28. Khan SR, Thamilselvan S (2000) Nephrolithiasis: a consequence of renal epithelial cell exposure to oxalate and calcium oxalate crystals. Mol Urol 4:305–312

    CAS  PubMed  Google Scholar 

  29. de Bruijn WC, Boeve ER, van Run PR, van Miert PP, de Water R, Romijn JC, Verkoelen CF, Cao LC, Schröder FH (1995) Etiology of calcium oxalate nephrolithiasis in rats. I. Can this be a model for human stone formation? Scanning Microsc 9:103–114

  30. de Water R, Noordermeer C, van der Kwast TH, Nizze H, Boevé ER, Kok DJ, Schröder FH (1999) Calcium oxalate nephrolithiasis: effect of renal crystal deposition on the cellular composition of the renal interstitium. Am J Kidney Dis 33:761–771

  31. Okada A, Yasui T, Hamamoto S, Hirose M, Kubota Y, Itoh Y, Tozawa K, Hayashi Y, Kohri K (2009) Genome-wide analysis of genes related to kidney stone formation and elimination in the calcium oxalate nephrolithiasis model mouse: detection of stone-preventive factors and involvement of macrophage activity. J Bone Miner Res 24:908–924

    Article  CAS  PubMed  Google Scholar 

  32. Boonla C, Hunapathed C, Bovornpadungkitti S, Poonpirome K, Tungsanga K, Sampatanukul P, Tosukhowong P (2008) Messenger RNA expression of monocyte chemoattractant protein-1 and interleukin-6 in stone-containing kidneys. BJU Int 101:1170–1177

    Article  CAS  PubMed  Google Scholar 

  33. Santos AC, Lima EM, Penido MG, Silveira KD, Teixeira MM, Oliveira EA, Simoes ESAC (2012) Plasma and urinary levels of cytokines in patients with idiopathic hypercalciuria. Pediatr Nephrol 27:941–948

    Article  PubMed  Google Scholar 

  34. Toblli JE, Cao G, Casas G, Stella I, Inserra F, Angerosa M (2005) NF-kappaB and chemokine-cytokine expression in renal tubulointerstitium in experimental hyperoxaluria. Role of the renin-angiotensin system. Urol Res 33:358–367

    Article  CAS  PubMed  Google Scholar 

  35. Kakizaki Y, Waga S, Sugimoto K, Tanaka H, Nukii K, Takeya M, Yoshimura T, Yokoyama M (1995) Production of monocyte chemoattractant protein-1 by bovine glomerular endothelial cells. Kidney Int 48:1866–1874

    Article  CAS  PubMed  Google Scholar 

  36. Diamond JR, Kees-Folts D, Ding G, Frye JE, Restrepo NC (1994) Macrophages, monocyte chemoattractant peptide-1, and TGF-beta 1 in experimental hydronephrosis. Am J Physiol 266:F926–F933

    CAS  PubMed  Google Scholar 

  37. Wung BS, Cheng JJ, Chao YJ, Lin J, Shyy YJ, Wang DL (1996) Cyclical strain increases monocyte chemotactic protein-1 secretion in human endothelial cells. Am J Physiol 270:H1462–H1468

    CAS  PubMed  Google Scholar 

  38. Satriano JA, Shuldiner M, Hora K, Xing Y, Shan Z, Schlondorff D (1993) Oxygen radicals as second messengers for expression of the monocyte chemoattractant protein, JE/MCP-1, and the monocyte colony-stimulating factor, CSF-1, in response to tumor necrosis factor-alpha and immunoglobulin G. Evidence for involvement of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent oxidase. J Clin Invest 92:1564–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Evan AP, Coe FL, Gillen D, Lingeman JE, Bledsoe S, Worcester EM (2008) Renal intratubular crystals and hyaluronan staining occur in stone formers with bypass surgery but not with idiopathic calcium oxalate stones. Anat Rec (Hoboken) 291:325–334

    Article  Google Scholar 

  40. Umekawa T, Chegini N, Khan SR (2002) Oxalate ions and calcium oxalate crystals stimulate MCP-1 expression by renal epithelial cells. Kidney Int 61:105–112

    Article  CAS  PubMed  Google Scholar 

  41. Umekawa T, Chegini N, Khan SR (2003) Increased expression of monocyte chemoattractant protein-1 (MCP-1) by renal epithelial cells in culture on exposure to calcium oxalate, phosphate and uric acid crystals. Nephrol Dial Transplant 18:664–669

    Article  CAS  PubMed  Google Scholar 

  42. Habibzadegah-Tari P, Byer KG, Khan SR (2006) Reactive oxygen species mediated calcium oxalate crystal-induced expression of MCP-1 in HK-2 cells. Urol Res 34:26–36

    Article  CAS  PubMed  Google Scholar 

  43. Habibzadegah-Tari P, Byer K, Khan SR (2005) Oxalate induced expression of monocyte chemoattractant protein-1 (MCP-1) in HK-2 cells involves reactive oxygen species. Urol Res 33:440–447

    Article  CAS  PubMed  Google Scholar 

  44. Umekawa T, Hatanaka Y, Kurita T, Khan SR (2004) Effect of angiotensin II receptor blockage on osteopontin expression and calcium oxalate crystal deposition in rat kidneys. J Am Soc Nephrol 15:635–644

    Article  CAS  PubMed  Google Scholar 

  45. Zuo J, Khan A, Glenton PA, Khan SR (2011) Effect of NADPH oxidase inhibition on the expression of kidney injury molecule and calcium oxalate crystal deposition in hydroxy-l-proline-induced hyperoxaluria in the male Sprague-Dawley rats. Nephrol Dial Transplant 26:1785–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Umekawa T, Tsuji H, Uemura H, Khan SR (2009) Superoxide from NADPH oxidase as second messenger for the expression of osteopontin and monocyte chemoattractant protein-1 in renal epithelial cells exposed to calcium oxalate crystals. BJU Int 104:115–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thamilselvan V, Menon M, Thamilselvan S (2009) Oxalate-induced activation of PKC-alpha and -delta regulates NADPH oxidase-mediated oxidative injury in renal tubular epithelial cells. Am J Physiol Renal Physiol 297:F1399–F1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rashed T, Menon M, Thamilselvan S (2004) Molecular mechanism of oxalate-induced free radical production and glutathione redox imbalance in renal epithelial cells: effect of antioxidants. Am J Nephrol 24:557–568

    Article  CAS  PubMed  Google Scholar 

  49. Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342

    Article  CAS  PubMed  Google Scholar 

  50. Kanellakis P, Agrotis A, Kyaw TS, Koulis C, Ahrens I, Mori S, Takahashi HK, Liu K, Peter K, Nishibori M, Bobik A (2011) High-mobility group box protein 1 neutralization reduces development of diet-induced atherosclerosis in apolipoprotein e-deficient mice. Arterioscler Thromb Vasc Biol 31:313–319

    Article  CAS  PubMed  Google Scholar 

  51. Bianchi ME (2004) Significant (re)location: how to use chromatin and/or abundant proteins as messages of life and death. Trends Cell Biol 14:287–293

    Article  CAS  PubMed  Google Scholar 

  52. Ulloa L, Messmer D (2006) High-mobility group box 1 (HMGB1) protein: friend and foe. Cytokine Growth Factor Rev 17:189–201

    Article  CAS  PubMed  Google Scholar 

  53. Fiuza C, Bustin M, Talwar S, Tropea M, Gerstenberger E, Shelhamer JH, Suffredini AF (2003) Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood 101:2652–2660

    Article  CAS  PubMed  Google Scholar 

  54. Andersson U, Wang H, Palmblad K, Aveberger AC, Bloom O, Erlandsson-Harris H, Janson A, Kokkola R, Zhang M, Yang H, Tracey KJ (2000) High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 192:565–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zheng SX, Pan YB, Wang C, Liu Y, Shi M, Ding G (2016) HMGB1 turns renal tubular epithelial cells into inflammatory promoters by interacting with TLR4 during sepsis. J Interferon Cytokine Res 36(1):9–19

    Article  CAS  PubMed  Google Scholar 

  56. Lemann FJ Jr (2002) Idiopathic hypercalciuria. In: Coe FL, Favus MJ, editors. Disorders of bone and mineral metabolism. 2nd ed. Lippincott, Williams & Wilkins, Philadelphia, pp 48–73

  57. Tekin N, Kural N, Torun M (1997) Renal function in children with hypercalciuria. Turk J Pediatr 39:335–339

    CAS  PubMed  Google Scholar 

  58. Stapleton FB, Chesney RW, Behrmann AT, Miller LA (1985) Increased urinary excretion of renal N-acetyl-beta-glucosaminidase in hypercalciuria. Am J Dis Child 139:950–952

    CAS  PubMed  Google Scholar 

  59. Chen G, Ward MF, Sama AE, Wang H (2004) Extracellular HMGB1 as a proinflammatory cytokine. J Interferon Cytokine Res 24:329–333

    Article  PubMed  Google Scholar 

  60. Oyama Y, Hashiguchi T, Taniguchi N, Tancharoen S, Uchimura T, Biswas KK, Kawahara K, Nitanda T, Umekita Y, Lotz M, Maruyama I (2010) High-mobility group box-1 protein promotes granulomatous nephritis in adenine-induced nephropathy. Lab Invest 90:853–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengyang Li.

Ethics declarations

Funding

This study was funded by the Natural Science Foundation of Guangxi province (NO.2011GXNSFA018177), the Guangdong Key Laboratory of Department of Urology (NO.2010A060801016), and the National Natural Science Foundation of China (NO.81360113).

Conflict of interest

The entire author declares that he/she has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee of the First Affiliated Hospital of Guangxi Medical University and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Sun, C., Li, C. et al. Urinary MCP-1、HMGB1 increased in calcium nephrolithiasis patients and the influence of hypercalciuria on the production of the two cytokines. Urolithiasis 45, 159–175 (2017). https://doi.org/10.1007/s00240-016-0902-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-016-0902-9

Keywords

Navigation