Skip to main content
Log in

Antilithic effects of extracts from different polarity fractions of Desmodium styracifolium on experimentally induced urolithiasis in rats

  • Original Paper
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

Desmodium styracifolium (D. styracifolium) has been widely used in traditional Chinese medicine for the treatment of urolithiasis. This work was undertaken to investigate extracts from different polarity fractions of D. styracifolium for possible antilithic effects as well as antioxidant potential to explore the underlying phytochemically active constituents of this plant. The extracts of D. styracifolium were divided into four different polarity fractions by petroleum ether (Fr. PE), chloroform (Fr. CH), ethyl acetate (Fr. EA), and n-butyl alcohol (Fr. NB). The antilithic and antioxidant effects were evaluated and compared in vivo on an animal model of calcium oxalate (CaOx) urolithiasis, which was established by administration of 1 % ethylene glycol along with 2 % ammonium chloride in drinking water for 28 days. A total of 60 male Sprague–Dawley rats were randomly divided into six groups: normal control group, lithogenic group, and four different polarity fractions of D. styracifolium-treated groups. At the end of the study, urine, blood, and kidney tissue samples were all collected for evaluation. Among the four polarity fractions of D. styracifolium extracts, the Fr. PE and Fr. NB treatment significantly reduced the CaOx crystal deposition in kidneys, prevented the renal toxic changes like pH, Cr, and BUN. In addition, Fr. PE and Fr. NB treatment significantly decreased urinary excretion of oxalate along with a increase of citrate excretion. The increased amounts of malondialdehyde and decreased activities of superoxide dismutase, catalase, and glutathione peroxidase were detected in lithogenic group, D. styracifolium extracts treatment prevented the oxidative stress changes especially for the Fr. PE and Fr. NB extracts. In conclusion, our data suggest that the extracts from D. styracifolium possess the antiurolithic activity, possibly mediated through the inhibition of CaOx crystal aggregation as well as the alleviation of oxidative injury in the kidney, and the Fr. PE and Fr. NB extracts are the active fractions of D. styracifolium extract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brikowski TH, Lotan Y, Pearle MS (2008) Climate-related increase in the prevalence of urolithiasis in the United States. Proc Natl Acad Sci USA 105(28):9841–9846

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Tiselius HG (2003) Epidemiology and medical management of stone disease. BJU Int 91(8):758–767

    Article  PubMed  Google Scholar 

  3. Moe OW (2006) Kidney stones: pathophysiology and medical management. Lancet 367:333–344

    Article  CAS  PubMed  Google Scholar 

  4. Gürocak S, Küpeli B (2006) Consumption of historical and current phytotherapeutic agents for urolithiasis: a critical review. J Urol 176(2):450–455

    Article  PubMed  Google Scholar 

  5. Miyaoka R, Monga M (2009) Use of traditional Chinese medicine in the management of urinary stone disease. Int Braz J Urol 35(4):396–405

    Article  PubMed  Google Scholar 

  6. Butterweck V, Khan SR (2009) Herbal medicines in the management of urolithiasis: alternative or complementary? Planta Med 75(10):1095–1103

    Article  CAS  PubMed  Google Scholar 

  7. Zhao M, Duan JA, Che CT (2007) Isoflavanones and their O-glycosides from Desmodium styracifolium. Phytochemistry 68(10):1471–1479

    Article  CAS  PubMed  Google Scholar 

  8. Gohel MD, Wong SP (2006) Chinese herbal medicines and their efficacy in treating renal stones. Urol Res 34(6):365–372

    Article  PubMed  Google Scholar 

  9. Rodgers AL, Webber D, Ramsout R, Gohel MD (2014) Herbal preparations affect the kinetic factors of calcium oxalate crystallization in synthetic urine: implications for kidney stone therapy. Urolithiasis 42(3):221–225

    Article  PubMed  Google Scholar 

  10. Mi J, Duan J, Zhang J, Lu J, Wang H, Wang Z (2012) Evaluation of antiurolithic effect and the possible mechanisms of Desmodium styracifolium and Pyrrosiae petiolosa in rats. Urol Res 40(2):151–161

    Article  PubMed  Google Scholar 

  11. Xiang ST, Zhou JF, Gan S, Rong XL, Li J, Wang SS (2013) Antiurolithiatic activity of aqueous extract from Desmodium styracifolium (Osb.) Merr. on renal calcium oxalate in rats. Chin J Exp Surg 30(6):1166

    Google Scholar 

  12. Xiang ST, Gan S, Zhou JF et al (2014) Effects of aqueous extract from Desmodium styracifolium (Osb.) Merr. on oxidative stress of renal calcium oxalate rat models. Chin J Urol 35(6):465–468

    Google Scholar 

  13. Cao ZG, Liu JH, Zhou SW et al (2004) The effects of the active constituents of Alisma orientalis on renal stone formation and bikunin expression in rat urolithiasis model. Natl Med J China 84(15):1276–1279

    CAS  Google Scholar 

  14. Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22(3):659–661

    Article  CAS  PubMed  Google Scholar 

  15. Evan AP, Worcester EM, Coe FL et al (2015) Mechanisms of human kidney stone formation. Urolithiasis 43(Suppl 1):19–32

    Article  PubMed  Google Scholar 

  16. Robertson WG, Hughes H (1993) Importance of mild hyperoxaluria in the pathogenesis of urolithiasis-new evidence from studies in the Arabian peninsula. Scanning Microsc 7(1):391–402

    CAS  PubMed  Google Scholar 

  17. Khan SR (1997) Animal models of kidney stone formation: an analysis. World J Urol 15(4):236–243

    Article  CAS  PubMed  Google Scholar 

  18. Khan SR, Glenton PA, Byer KJ (2006) Modeling of hyperoxaluric calcium oxalate nephrolithiasis: experimental induction of hyperoxaluria by hydroxy-l-proline. Kidney Int 70(5):914–923

    Article  CAS  PubMed  Google Scholar 

  19. Joshi S, Saylor BT, Wang W et al (2012) Apocynin-treatment reverses hyperoxaluria induced changes in NADPH oxidase system expression in rat kidneys: a transcriptional study. PLoS One 7:e47738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Atmani F, Slimani Y, Mimouni M et al (2003) Prophylaxis of calcium oxalate stones by Herniaria hirsuta on experimentally induced nephrolithiasis in rats. BJU Int 92(1):137–140

    Article  CAS  PubMed  Google Scholar 

  21. Bashir S, Gilani AH (2011) Antiurolithic effect of berberine is mediated through multiple pathways. Eur J Pharmacol 651(1–3):168–175

    Article  CAS  PubMed  Google Scholar 

  22. Soundararajan P, Mahesh R, Ramesh T et al (2006) Effect of Aerva lanata on calcium oxalate urolithiasis in rats. Indian J Exp Biol 44(12):981–986

    CAS  PubMed  Google Scholar 

  23. The State Pharmacopoeia Commission of P.R. China (2005) In: Pharmacopoeia of the People’s Republic of China, vol. I. Chemical Industry Press, Beijing, PR China, p 30

  24. Khan SR (2013) Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J Urol 189(3):803–811

    Article  CAS  PubMed  Google Scholar 

  25. Khan SR (2005) Hyperoxaluria-induced oxidative stress and antioxidants for renal protection. Urol Res 33(5):349–357

    Article  CAS  PubMed  Google Scholar 

  26. Thamilselvan S, Khan SR, Menon M (2003) Oxalate and calcium oxalate mediated free radical toxicity in renal epithelial cells: effect of antioxidants. Urol Res 31(1):3–9

    CAS  PubMed  Google Scholar 

  27. Ashok P, Koti BC, Vishwanathswamy AH (2010) Antiurolithiatic and antioxidant activity of Mimusops elengi on ethylene glycol-induced urolithiasis in rats. Indian J Pharmacol 42(6):380–383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Tsujihata M (2008) Mechanism of calcium oxalate renal stone formation and renal tubular cell injury. Int J Urol 15(2):115–120

    Article  CAS  PubMed  Google Scholar 

  29. Li CY, Deng YL, Sun BH (2009) Taurine protected kidney from oxidative injury through mitochondrial-linked pathway in a rat model of nephrolithiasis. Urol Res 37(4):211–220

    Article  CAS  PubMed  Google Scholar 

  30. Naghii MR, Eskandari E, Mofid M, Jafari M, Asadi MH (2014) Antioxidant therapy prevents ethylene glycol-induced renal calcium oxalate crystal deposition in Wistar rats. Int Urol Nephrol 46(6):1231–1238

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the grand from Guangdong Provincial Department of Science and Technology (No. 2008B030301363). We thank Zhijian Liao, Zhenchao Yin, Yiming Liu, and Aihua Lin for experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Songtao Xiang or Shusheng Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Songtao Xiang and Jianfu Zhou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, S., Zhou, J., Li, J. et al. Antilithic effects of extracts from different polarity fractions of Desmodium styracifolium on experimentally induced urolithiasis in rats. Urolithiasis 43, 433–439 (2015). https://doi.org/10.1007/s00240-015-0795-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-015-0795-z

Keywords

Navigation