Skip to main content
Log in

Are Synonymous Sites in Primates and Rodents Functionally Constrained?

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

It has been claimed that synonymous sites in mammals are under selective constraint. Furthermore, in many studies the selective constraint at such sites in primates was claimed to be more stringent than that in rodents. Given the larger effective population sizes in rodents than in primates, the theoretical expectation is that selection in rodents would be more effective than that in primates. To resolve this contradiction between expectations and observations, we used processed pseudogenes as a model for strict neutral evolution, and estimated selective constraint on synonymous sites using the rate of substitution at pseudosynonymous and pseudononsynonymous sites in pseudogenes as the neutral expectation. After controlling for the effects of GC content, our results were similar to those from previous studies, i.e., synonymous sites in primates exhibited evidence for higher selective constraint that those in rodents. Specifically, our results indicated that in primates up to 24 % of synonymous sites could be under purifying selection, while in rodents synonymous sites evolved neutrally. To further control for shifts in GC content, we estimated selective constraint at fourfold degenerate sites using a maximum parsimony approach. This allowed us to estimate selective constraint using mutational patterns that cause a shift in GC content (GT ↔ TG, CT ↔ TC, GA ↔ AG, and CA ↔ AC) and ones that do not (AT ↔ TA and CG ↔ GC). Using this approach, we found that synonymous sites evolve neutrally in both primates and rodents. Apparent deviations from neutrality were caused by a higher rate of C → A and C → T mutations in pseudogenes. Such differences are most likely caused by the shift in GC content experienced by pseudogenes. We conclude that previous estimates according to which 20–40 % of synonymous sites in primates were under selective constraint were most likely artifacts of the biased pattern of mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akashi H, Eyre-Walker A (1998) Translational selection and molecular evolution. Curr Opin Genet Dev 8:688

    Article  PubMed  CAS  Google Scholar 

  • Arndt PF, Petrov DA, Hwa T (2003) Distinct changes of genomic biases in nucleotide substitution at the time of Mammalian radiation. Mol Biol Evol 20:1887

    Article  PubMed  CAS  Google Scholar 

  • Berglund J, Pollard KS, Webster MT (2009) Hotspots of biased nucleotide substitutions in human genes. PLoS Biol 7:e26

    Article  PubMed  CAS  Google Scholar 

  • Bielawski JP, Dunn KA, Yang Z (2000) Rates of nucleotide substitution and mammalian nuclear gene evolution. Approximate and maximum-likelihood methods lead to different conclusions. Genetics 156:1299

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bustamante CD, Nielsen R, Hartl DL (2002) A maximum likelihood method for analyzing pseudogene evolution: implications for silent site evolution in humans and rodents. Mol Biol Evol 19:110

    Article  PubMed  CAS  Google Scholar 

  • Caceres EF, Hurst LD (2013) The evolution, impact and properties of exonic splice enhancers. Genome Biol 14:R143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Capon F, Allen MH, Ameen M, Burden AD, Tillman D, Barker JN, Trembath RC (2004) A synonymous SNP of the corneodesmosin gene leads to increased mRNA stability and demonstrates association with psoriasis across diverse ethnic groups. Hum Mol Genet 13:2361

    Article  PubMed  CAS  Google Scholar 

  • Chamary JV, Parmley JL, Hurst LD (2006) Hearing silence: non-neutral evolution at synonymous sites in mammals. Nat Rev Genet 7:98

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B (2009) Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat Rev Genet 10:195

    Article  PubMed  CAS  Google Scholar 

  • Chen CL, Rappailles A, Duquenne L, Huvet M, Guilbaud G, Farinelli L, Audit B, d’Aubenton-Carafa Y, Arneodo A, Hyrien O, Thermes C (2010) Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes. Genome Res 20:447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Comeron JM (2006) Weak selection and recent mutational changes influence polymorphic synonymous mutations in humans. Proc Natl Acad Sci USA 103:6940

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coulondre C, Miller JH, Farabaugh PJ, Gilbert W (1978) Molecular basis of base substitution hotspots in Escherichia coli. Nature 274:775

    Article  PubMed  CAS  Google Scholar 

  • Doherty A, McInerney JO (2013) Translational selection frequently overcomes genetic drift in shaping synonymous codon usage patterns in vertebrates. Mol Biol Evol 30:2263

    Article  PubMed  CAS  Google Scholar 

  • dos Reis M, Savva R, Wernisch L (2004) Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res 32:5036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drummond DA, Wilke CO (2008) Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134:341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duan J, Wainwright MS, Comeron JM, Saitou N, Sanders AR, Gelernter J, Gejman PV (2003) Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum Mol Genet 12:205

    Article  PubMed  CAS  Google Scholar 

  • Duret L (2002) Evolution of synonymous codon usage in metazoans. Curr Opin Genet Dev 12:640

    Article  PubMed  CAS  Google Scholar 

  • Duret L, Arndt PF (2008) The impact of recombination on nucleotide substitutions in the human genome. PLoS Genet 4:e1000071

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eory L, Halligan DL, Keightley PD (2010) Distributions of selectively constrained sites and deleterious mutation rates in the hominid and murid genomes. Mol Biol Evol 27:177

    Article  PubMed  CAS  Google Scholar 

  • Fairbrother WG, Holste D, Burge CB, Sharp PA (2004) Single nucleotide polymorphism-based validation of exonic splicing enhancers. PLoS Biol 2:E268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, Garcia-Giron C, Gordon L, Hourlier T, Hunt S, Juettemann T, Kahari AK, Keenan S, Komorowska M, Kulesha E, Longden I, Maurel T, McLaren WM, Muffato M, Nag R, Overduin B, Pignatelli M, Pritchard B, Pritchard E, Riat HS, Ritchie GR, Ruffier M, Schuster M, Sheppard D, Sobral D, Taylor K, Thormann A, Trevanion S, White S, Wilder SP, Aken BL, Birney E, Cunningham F, Dunham I, Harrow J, Herrero J, Hubbard TJ, Johnson N, Kinsella R, Parker A, Spudich G, Yates A, Zadissa A, Searle SM (2013) Ensembl 2013. Nucleic Acids Res 41:D48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gojobori T, Li WH, Graur D (1982) Patterns of nucleotide substitution in pseudogenes and functional genes. J Mol Evol 18:360

    Article  PubMed  CAS  Google Scholar 

  • Graul RC, Sadee W (1997) Evolutionary relationships among proteins probed by an iterative neighborhood cluster analysis (INCA). Alignment of bacteriorhodopsins with the yeast sequence YRO2. Pharm Res 14:1533

    Article  PubMed  CAS  Google Scholar 

  • Green P (2007) 2x genomes–does depth matter? Genome Res 17:1547

    Article  PubMed  CAS  Google Scholar 

  • Green P, Ewing B, Miller W, Thomas PJ, Green ED (2003) Transcription-associated mutational asymmetry in mammalian evolution. Nat Genet 33:514

    Article  PubMed  CAS  Google Scholar 

  • Gu W, Wang X, Zhai C, Xie X, Zhou T (2012) Selection on synonymous sites for increased accessibility around miRNA binding sites in plants. Mol Biol Evol 29:3037

    Article  PubMed  CAS  Google Scholar 

  • Hellmann I, Ebersberger I, Ptak SE, Paabo S, Przeworski M (2003a) A neutral explanation for the correlation of diversity with recombination rates in humans. Am J Hum Genet 72:1527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hellmann I, Zollner S, Enard W, Ebersberger I, Nickel B, Paabo S (2003b) Selection on human genes as revealed by comparisons to chimpanzee cDNA. Genome Res 13:831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hellmann I, Prufer K, Ji H, Zody MC, Paabo S, Ptak SE (2005) Why do human diversity levels vary at a megabase scale? Genome Res 15:1222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hurst LD (2006) Preliminary assessment of the impact of microRNA-mediated regulation on coding sequence evolution in mammals. J Mol Evol 63:174

    Article  PubMed  CAS  Google Scholar 

  • Hurst LD, Williams EJ (2000) Covariation of GC content and the silent site substitution rate in rodents: implications for methodology and for the evolution of isochores. Gene 261:107

    Article  PubMed  CAS  Google Scholar 

  • Hwang DG, Green P (2004) Bayesian Markov chain Monte Carlo sequence analysis reveals varying neutral substitution patterns in mammalian evolution. Proc Natl Acad Sci USA 101:13994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13

    PubMed  CAS  Google Scholar 

  • Kanaya S, Yamada Y, Kinouchi M, Kudo Y, Ikemura T (2001) Codon usage and tRNA genes in eukaryotes: correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by multivariate analysis. J Mol Biol 53:290

    CAS  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keightley PD, Halligan DL (2011) Inference of site frequency spectra from high-throughput sequence data: quantification of selection on nonsynonymous and synonymous sites in humans. Genetics 188:931

    Article  PubMed  PubMed Central  Google Scholar 

  • Keightley PD, Eory L, Halligan DL, Kirkpatrick M (2011) Inference of mutation parameters and selective constraint in mammalian coding sequences by approximate Bayesian computation. Genetics 187:1153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koren A, Polak P, Nemesh J, Michaelson JJ, Sebat J, Sunyaev SR, McCarroll SA (2012) Differential relationship of DNA replication timing to different forms of human mutation and variation. Am J Hum Genet 91:1033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar S (2005) Molecular clocks: four decades of evolution. Nat Rev Genet 6:654

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Subramanian S (2002) Mutation rates in mammalian genomes. Proc Natl Acad Sci USA 99:803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ (2001) Initial sequencing and analysis of the human genome. Nature 409:860

    Article  PubMed  CAS  Google Scholar 

  • Lawrie DS, Petrov DA, Messer PW (2011) Faster than neutral evolution of constrained sequences: the complex interplay of mutational biases and weak selection. Genome Biol Evol 3:383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lawrie DS, Messer PW, Hershberg R, Petrov DA (2013) Strong purifying selection at synonymous sites in D. melanogaster. PLoS Genet 9:e1003527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Majewski J (2003) Dependence of mutational asymmetry on gene-expression levels in the human genome. Am J Hum Genet 73:688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McVean ATG, Charlesworth B (1999) A population genetic model for the evolution of synonymous codon usage: patterns and predictions. Genet Res 74:145

    Article  Google Scholar 

  • Meunier J, Duret L (2004) Recombination drives the evolution of GC-content in the human genome. Mol Biol Evol 21:984

    Article  PubMed  CAS  Google Scholar 

  • Nikolaev SI, Montoya-Burgos JI, Popadin K, Parand L, Margulies EH, Antonarakis SE (2007) Life-history traits drive the evolutionary rates of mammalian coding and noncoding genomic elements. Proc Natl Acad Sci USA 104:20443

    Article  PubMed  PubMed Central  Google Scholar 

  • Notredame C, Abergel C (2003) Using multiple alignment methods to assess the quality of genomic data analysis. In: Andrade M (ed) Bioinformatics and genomes: current perspectives. Horizon Scientific Press, Wymondham (United Kingdom), pp 30–50

    Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205

    Article  PubMed  CAS  Google Scholar 

  • Ohta T (1973) Slightly deleterious mutant substitutions in evolution. Nature 246:96

    Article  PubMed  CAS  Google Scholar 

  • Ophir R, Itoh T, Graur D, Gojobori T (1999) A simple method for estimating the intensity of purifying selection in protein-coding genes. Mol Biol Evol 16:49

    Article  PubMed  CAS  Google Scholar 

  • Pagani F, Baralle FE (2004) Genomic variants in exons and introns: identifying the splicing spoilers. Nat Rev Genet 5:389

    Article  PubMed  CAS  Google Scholar 

  • Parmley JL, Chamary JV, Hurst LD (2006) Evidence for purifying selection against synonymous mutations in mammalian exonic splicing enhancers. Mol Biol Evol 23:301

    Article  PubMed  CAS  Google Scholar 

  • Phifer-Rixey M, Bonhomme F, Boursot P, Churchill GA, Pialek J, Tucker PK, Nachman MW (2012) Adaptive evolution and effective population size in wild house mice. Mol Biol Evol 29:2949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Piganeau G, Mouchiroud D, Duret L, Gautier C (2002) Expected relationship between the silent substitution rate and the GC content: implications for the evolution of isochores. J Mol Evol 54:129

    Article  PubMed  CAS  Google Scholar 

  • Pink CJ, Hurst LD (2010) Timing of replication is a determinant of neutral substitution rates but does not explain slow Y chromosome evolution in rodents. Mol Biol Evol 27:1077

    Article  PubMed  CAS  Google Scholar 

  • Popadin KY, Nikolaev SI, Junier T, Baranova M, Antonarakis SE (2013) Purifying selection in mammalian mitochondrial protein-coding genes is highly effective and congruent with evolution of nuclear genes. Mol Biol Evol 30:347

    Article  PubMed  CAS  Google Scholar 

  • Ratnakumar A, Mousset S, Glemin S, Berglund J, Galtier N, Duret L, Webster MT (2010) Detecting positive selection within genomes: the problem of biased gene conversion. Philos Trans R Soc Lond B 365:2571

    Article  CAS  Google Scholar 

  • Rhind N, Gilbert DM (2013) DNA replication timing. Cold Spring Harb Perspect Biol 5:a010132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Romiguier J, Ranwez V, Douzery EJ, Galtier N (2013) Genomic evidence for large, long-lived ancestors to placental mammals. Mol Biol Evol 30:5

    Article  PubMed  CAS  Google Scholar 

  • Schmegner C, Hameister H, Vogel W, Assum G (2007) Isochores and replication time zones: a perfect match. Cytogenet Genome Res 116:167

    Article  PubMed  CAS  Google Scholar 

  • Schneider A, Dessimoz C, Gonnet GH (2007) OMA Browser–exploring orthologous relations across 352 complete genomes. Bioinformatics 23:2180

    Article  PubMed  CAS  Google Scholar 

  • Siepel A, Haussler D (2004) Phylogenetic estimation of context-dependent substitution rates by maximum likelihood. Mol Biol Evol 21:468

    Article  PubMed  CAS  Google Scholar 

  • Smith NG, Hurst LD (1998) Sensitivity of patterns of molecular evolution to alterations in methodology: a critique of Hughes and Yeager. J Mol Evol 47:493

    Article  PubMed  CAS  Google Scholar 

  • Stamatoyannopoulos JA, Adzhubei I, Thurman RE, Kryukov GV, Mirkin SM, Sunyaev SR (2009) Human mutation rate associated with DNA replication timing. Nat Genet 41:393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stergachis AB, Haugen E, Shafer A, Fu W, Vernot B, Reynolds A, Raubitschek A, Ziegler S, LeProust EM, Akey JM, Stamatoyannopoulos JA (2013) Exonic transcription factor binding directs codon choice and affects protein evolution. Science 342:1367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stoletzki N, Eyre-Walker A (2007) Synonymous codon usage in Escherichia coli: selection for translational accuracy. Mol Biol Evol 24:374

    Article  PubMed  CAS  Google Scholar 

  • Subramanian S, Kumar S (2003) Neutral substitutions occur at a faster rate in exons than in noncoding DNA in primate genomes. Genome Res 13:838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • The Chimpanzee Sequencing and Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69

    Article  CAS  Google Scholar 

  • Tyekucheva S, Makova KD, Karro JE, Hardison RC, Miller W, Chiaromonte F (2008) Human-macaque comparisons illuminate variation in neutral substitution rates. Genome Biol 9:R76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vicoso B, Charlesworth B (2006) Evolution on the X chromosome: unusual patterns and processes. Nat Rev Genet 7:645

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Rolish ME, Yeo G, Tung V, Mawson M, Burge CB (2004) Systematic identification and analysis of exonic splicing silencers. Cell 119:831

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Xiao X, Van Nostrand E, Burge CB (2006) General and specific functions of exonic splicing silencers in splicing control. Mol Cell 23:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolfe KH, Sharp PM, Li WH (1989) Mutation rates differ among regions of the mammalian genome. Nature 337:283

    Article  PubMed  CAS  Google Scholar 

  • Woodfine K, Fiegler H, Beare DM, Collins JE, McCann OT, Young BD, Debernardi S, Mott R, Dunham I, Carter NP (2004) Replication timing of the human genome. Hum Mol Genet 13:191

    Article  PubMed  CAS  Google Scholar 

  • Wright SI, Yau CB, Looseley M, Meyers BC (2004) Effects of gene expression on molecular evolution in Arabidopsis thaliana and Arabidopsis lyrata. Mol Biol Evol 21:1719

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555

    PubMed  CAS  Google Scholar 

  • Yuan Q, Zhou Z, Lindell SG, Higley JD, Ferguson B, Thompson RC, Lopez JF, Suomi SJ, Baghal B, Baker M, Mash DC, Barr CS, Goldman D (2012) The rhesus macaque is three times as diverse but more closely equivalent in damaging coding variation as compared to the human. BMC Genet 13:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou T, Gu W, Wilke CO (2010) Detecting positive and purifying selection at synonymous sites in yeast and worm. Mol Biol Evol 27:1912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kiyoshi Ezawa and the reviewers for their useful comments and suggestions. We also thank Jeff Sarlo for his technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Price.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 446 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Price, N., Graur, D. Are Synonymous Sites in Primates and Rodents Functionally Constrained?. J Mol Evol 82, 51–64 (2016). https://doi.org/10.1007/s00239-015-9719-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-015-9719-3

Keywords

Navigation