Skip to main content
Log in

Occurrence of Hemocyanin in Ostracod Crustaceans

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Hemocyanin is a copper-containing protein that transports O2 in the hemolymph of many arthropod species. Within the crustaceans, hemocyanin appeared to be restricted to Malacostraca but has recently been identified in Remipedia. Here, we report the occurrence of hemocyanin in ostracods, indicating that this respiratory protein is more widespread within crustaceans than previously thought. By analyses of expressed sequence tags and by RT-PCR, we obtained four full length and nine partial hemocyanin sequences from six of ten investigated ostracod species. Hemocyanin was identified in Myodocopida (Actinoseta jonesi, Cypridininae sp., Euphilomedes morini, Skogsbergia lerneri, Vargula tsujii) and Platycopida (Cytherelloidea californica) but not in Podocopida. We found no evidence for the presence of hemoglobin in any of these ostracod species. Like in other arthropods, we identified multiple hemocyanin subunits (up to six) to occur in a single ostracod species. Bayesian phylogenetic analyses showed that ostracod hemocyanin subunit diversity evolved independently from that of other crustaceans. Ostracod hemocyanin subunits were found paraphyletic, with myodocopid and platycopid subunits forming distinct clades within those of the crustaceans. This pattern suggests that ostracod hemocyanins originated from distinct subunits in the pancrustacean stemline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BPP:

Bayesian posterior probability

Hc:

Hemocyanin

MYA:

Million years ago

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  CAS  PubMed  Google Scholar 

  • Abe K, Vannier J (1995) Functional morphology and significance of the circulatory system of Ostracoda, exemplified by Vargula hilgendorfii (Myodocopida). Mar Biol 124:51–58

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Bowman TE, Abele LG (1982) Classification of the recent crustacea. In: Abele LG (ed) The Biology of Crustacea, vol 1., Systematics, the Fossil Record and BiogeographyAcademic Press, New York, London, pp 1–27

    Google Scholar 

  • Burmester T (1999) Identification, molecular cloning and phylogenetic analysis of a non-respiratory pseudo-hemocyanin of Homarus americanus. J Biol Chem 274:13217–13222

    Article  CAS  PubMed  Google Scholar 

  • Burmester T (2001) Molecular evolution of the arthropod hemocyanin superfamily. Mol Biol Evol 18:184–195

    Article  CAS  PubMed  Google Scholar 

  • Burmester T (2002) Origin and evolution of arthropod hemocyanins and related proteins. J Comp Physiol B 172:95–107

    Article  CAS  PubMed  Google Scholar 

  • Corbari L, Carbonel P, Massabuau JC (2004a) How a low tissue O2 strategy could be conserved in early crustaceans: the example of the podocopid ostracods. J Exp Biol 207:4415–4425

    Article  PubMed  Google Scholar 

  • Corbari L, Carbonel P, Massabuau JC (2004b) The early life history of tissue oxygenation in crustaceans: the strategy of the myodocopid ostracod Cylindroleberis mariae. J Exp Biol 208:661–670

    Article  Google Scholar 

  • Dewilde S, Ebner B, Vinck E, Gilany K, Hankeln T, Burmester T, Kreiling J, Reinisch C, Vanfleteren JR, Kiger L, Marden MC, Hundahl C, Fago A, van Doorslaer S, Moens L (2006) The nerve hemoglobin of the bivalve mollusc Spisula solidissima, molecular cloning, ligand binding studies, and phylogenetic analysis. J Biol Chem 281:5364–5372

    Article  CAS  PubMed  Google Scholar 

  • Ertas B, von Reumont BJ, Wägele JW, Misof B, Burmester T (2009) Hemocyanin suggests a close relationship of Remipedia and Hexapoda. Mol Biol Evol 26:2711–2718

    Article  CAS  PubMed  Google Scholar 

  • Ertas B, Kiger L, Blank M, Marden MC, Burmester T (2011) A membrane-bound hemoglobin from gills of the Green Shore Crab Carcinus maenas. J Biol Chem 286:3185–3193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fox HM (1957) Haemoglobin in the Crustacea. Nature 179:148

    Article  CAS  PubMed  Google Scholar 

  • Gaykema WPJ, Hol WGJ, Vereifken JM, Soeter NM, Bak HJ, Beintema JJ (1984) 3.2 Å structure of the copper-containing oxygen-carrying protein Panulirus interruptus hemocyanin. Nature 309:23–29

    Article  CAS  Google Scholar 

  • Herberts C, de Frescheville J (1981) Occurrence of hemocyanin in. the rhizocephalan crustacea Sacculina carcini Thompson. Comp Biochem Physiol B 70:657–659

    Google Scholar 

  • Horne DJ, Cohen A, Martens K (2002) Taxonomy, morphology and biology of quaternary and living ostracoda. In: Holmes JA, Chivas AR (eds) The ostracoda: applications in quaternary research, vol 131. Geophysical Monograph American Geophysical Union, Washington, DC, pp 5–36

  • Horne DJ, Schön I, Smith RJ, Martens K (2005) What are Ostracoda? A cladistics analysis of the extant superfamilies of the subclasses Myodocopa and Podocopa (Crustacea, Ostracoda). In: Koenemann S, Jenner RA (eds) Crustacea and Arthropod Relationships. CRC Press, Boca Raton (FL), pp 249–273

    Chapter  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Ikeya N, Tsukagoshi A, Horne DJ (2005) Preface: The phylogeny, fossil record and ecological diversity of ostracod crustaceans. Hydrobiologia 538:vii–xiii. In: Ikeya N, Tsukagoshi A, Horne D J (eds.): Evolution and Diversity of Ostracoda. 14th International Symposium on Ostracoda (ISO 2001), Shizuoka, Japan

  • Katoh K, Kumal K, Tohl H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keyser D (1990) Morphological changes and function of the inner lamella layer of podocopid Ostracoda. In: Whatley R, Maybury C (eds) Ostracoda and Global Events. Chapman and Hall, London, pp 401–410

    Chapter  Google Scholar 

  • Kusche K, Burmester T (2001) Diplopod hemocyanin sequence and the phylogenetic position of the Myriapoda. Mol Biol Evol 18:1566–1573

    Article  CAS  PubMed  Google Scholar 

  • Kusche K, Ruhberg H, Burmester T (2002) A hemocyanin from the Onychophora and the emergence of respiratory proteins. Proc Natl Acad Sci USA 99:10545–10548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kusche K, Hembach A, Milke C, Burmester T (2003) Molecular characterisation and evolution of the hemocyanin from the European spiny lobster, Palinurus elephas. J Comp Physiol B 173:319–325

    Article  CAS  PubMed  Google Scholar 

  • Linzen B, Soeter NM, Riggs AF, Schneider HJ, Schartau W, Moore MD, Yokata E, Behrens PQ, Nakashima H, Takagi T, Nemoto T, Vereijken JM, Bak HJ, Beintema JJ, Volbeda A, Gaykema WPJ, Hol WGJ (1985) The structure of arthropod hemocyanins. Science 229:519–524

    Article  CAS  PubMed  Google Scholar 

  • Mangum CP (1985) Oxygen transport in invertebrates. Am J Physiol 248:505–514

    Google Scholar 

  • Markl J (1986) Evolution and function of structurally diverse subunits in the respiratory protein hemocyanin from arthropods. Biol Bull 171:90–115

    Article  CAS  Google Scholar 

  • Markl J, Decker H (1992) Molecular structure of the arthropod hemocyanins. In: Mangum CP (ed) Advances in Comparative and Environmental Physiology, vol 13., pp 325–376

    Google Scholar 

  • Markl J, Stocker W, Runzler R, Precht E (1986) Immunological correspondences between the hemocyanin subunits of 86 arthropods: evolution of a multigene protein family. In: Linzen B (ed) Invertebrate Oxygen Carriers. Springer-Verlag, Heidelberg, pp 281–292

    Chapter  Google Scholar 

  • Martens K, Schön I, Meisch C, Horne DJ (2008) Global diversity of ostracods (Ostracoda, Crustacea) in freshwater. Hydrobiologia 595:185–193

    Article  Google Scholar 

  • Marxen JC, Pick C, Kwiatkowski M, Burmester T (2013) Molecular characterization and evolution of hemocyanin from the two Freshwater shrimps Caridina multidentata (Stimpson, 1860) and Atyopsis moluccensis (De Haan, 1849). J Comp Physiol B 183:623–624

    Article  Google Scholar 

  • Nicholas KB, Nicholas HBJ, Deerfield DWI (1997) GeneDoc: analysis and visualization of genetic variation. EMBnet NEWS 4:14

    Google Scholar 

  • Oakley TH, Wolfe JM, Lindgren AR, Zaharoff AK (2013) Phylotranscriptomics to bring the understudied into the fold: monophyletic ostracoda, fossil placement, and pancrustacean phylogeny. Mol Biol Evol 30:215–233

    Article  CAS  PubMed  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Pick C, Schneuer M, Burmester T (2009) The occurrence of hemocyanin in Hexapoda. FEBS J 276:1930–1941

    Article  CAS  PubMed  Google Scholar 

  • Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083

    Article  CAS  PubMed  Google Scholar 

  • Scherbaum S, Beyhan E, Gebauer W, Burmester T (2010) Characterization of hemocyanin from the peacock mantis shrimp Odontodactylus scyllarus (Malacostraca: hoplocarida). J Comp Physiol B 180:1235–1245

    Article  CAS  PubMed  Google Scholar 

  • Smith AJ, Horne DJ (2002) Ecology of marine, marginal marine and nonmarine ostracodes. In: Holmes JA, Chivas AR (eds) The Ostracoda: applications in quaternary research, vol 131. Geophysical Monograph American Geophysical Union, Washington, DC, pp 37–64

  • Stamatakis A (2006) RAxML-VI-HPC: maximum Likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Terwilliger NB, Dangott L, Ryan M (1999) Cryptocyanin, a crustacean molting protein: evolutionary link with arthropod hemocyanins and insect hexamerins. Proc Natl Acad Sci USA 96:2013–2018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tinn O, Oakley TH (2008) Erratic rates of molecular evolution and incongruence of fossil and molecular divergence time estimates in Ostracoda (Crustacea). Mol Phylogenet Evol 48:157–167

    Article  CAS  PubMed  Google Scholar 

  • van Holde KE, Miller KI (1995) Hemocyanins. Adv Prot Chem 47:1–81

    Article  Google Scholar 

  • Vannier J, Abe K (1995) Size, body plan and respiration in the Ostracoda. Palaeontology 38:843–873

    Google Scholar 

  • Volbeda A, Hol WGJ (1989) Crystal structure of hexameric haemocyanin from Panulirus interruptus refined at 3.2 Å resolution. J Mol Biol 209:249–279

    Article  CAS  PubMed  Google Scholar 

  • von Reumont BM, Jenner RA, Wills MA, Dell’Ampio E, Pass G, Ebersberger I, Meyer B, Koenemann S, Iliffe TM, Stamatakis A, Niehuis O, Meusemann K, Misof B (2012) Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. Mol Biol Evol 29:1031–1045

    Article  Google Scholar 

  • Weber RE, Vinogradov SN (2001) Nonvertebrate Hemoglobins: functions and Molecular Adaptations. Physiol Rev 81:569–628

    CAS  PubMed  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a Maximum-Likelihood approach. Mol Biol Evol 18:691–699

Download references

Acknowledgments

We thank Janus Borner for access to the program Primerlyze, Dietmar Keyser for his help with species determination, and Elizabeth Torres for her numerous attempts to collect S. lerneri. This work was supported by the Deutsche Forschungsgemeinschaft (BU 956/14) to TB and by the National Science Foundation (DEB-1146337) to THO.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia C. Marxen.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 666 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marxen, J.C., Pick, C., Oakley, T.H. et al. Occurrence of Hemocyanin in Ostracod Crustaceans. J Mol Evol 79, 3–11 (2014). https://doi.org/10.1007/s00239-014-9636-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-014-9636-x

Keywords

Navigation